organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-5-fluoro­pyrimidin-2(1H)-one–2-amino-5-fluoro­pyrimidin-4(3H)-one–water (1/1/1)

CROSSMARK_Color_square_no_text.svg

aChristopher Ingold Laboratory, Department of Chemistry, 20 Gordon St., London WC1H 0AJ, England
*Correspondence e-mail: a.hulme@ucl.ac.uk

(Received 1 June 2005; accepted 8 June 2005; online 17 June 2005)

The title co-crystal, C4H4FN3O·C4H4FN3O·H2O, has one mol­ecule of 4-amino-5-fluoro­pyrimidin-2(1H)-one, one mol­ecule of its isomer 2-amino-5-fluoro­pyrimidin-4(3H)-one and a mol­ecule of water in the asymmetric unit. 4-Amino-5-fluoro­pyrimidin-2(1H)-one is commonly known as 5-fluoro­cytosine.

Comment

The title co-crystal, (I)[link] (Fig. 1[link]), was grown by evaporation of a 50% aqueous solution of ethanol saturated with 5-fluoro­cytosine. Two different crystal forms were obtained from this solution. The major crystallisation product exhibited a block morphology and was the known monohydrate of 5-fluoro­cytosine (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]). A small number of needle-shaped crystals were observed as the minor crystallization product. These crystals proved to be the co-crystal, (I)[link]. The isomer of 5-fluoro­cytosine was assumed to have been present in the commercial sample of 5-fluoro­cytosine purchased from Fluoro­chem (98% pure, Old Glossop, UK) that was used to prepare the initial solution.

[Scheme 1]

The simplest hydrogen-bonded subunit observed is a two-mol­ecule unit, containing one mol­ecule of each isomer. Each mol­ecule of 5-fluoro­cytosine forms three hydrogen bonds to a mol­ecule of the isomer (N4—H2⋯O14, N13—H13⋯N3 and N12—H12⋯O2), forming two adjoining R22(8) hydrogen bond rings (Table 1[link]). Two different R24(8) hydrogen-bond rings join these subunits together to form a ribbon (Fig. 2[link]).

The role of the water mol­ecules in the structure is to join together the ribbons into a hydrogen-bonded sheet. The water hydrogen bonds to two mol­ecules from one ribbon, acting both as donor and acceptor, and as a donor to a third mol­ecule, from a different ribbon (Table 1[link]). The ribbons form stepped sheets, parallel to the 01[\overline{1}] planes (Fig. 3[link]).

Within the ribbon structure, there is also a close F⋯F contact, between F5 and F15, of 2.9003 (15) Å; however, this is likely to have arisen as a consequence of the adjacent R24(8) hydrogen-bond ring.

[Figure 1]
Figure 1
The asymmetric unit of the title co-crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres. Dotted lines indicate hydrogen bonds.
[Figure 2]
Figure 2
The hydrogen bonded ribbon present in the title structure. Dotted lines indicate hydrogen bonds.
[Figure 3]
Figure 3
The stepped structure of the sheet, comprising ribbons which are hydrogen bonded (dotted lines) via water mol­ecules.

Experimental

Crystals were grown from a 50% aqueous ethanol solution, by evaporation at room temperature. The crystal form reported was the minor crystallisation product.

Crystal data
  • C4H4FN3O·C4H4FN3O·H2O

  • Mr = 276.22

  • Triclinic, [P \overline 1]

  • a = 5.4122 (16) Å

  • b = 8.447 (2) Å

  • c = 12.083 (4) Å

  • α = 89.454 (5)°

  • β = 85.718 (5)°

  • γ = 77.096 (4)°

  • V = 536.9 (3) Å3

  • Z = 2

  • Dx = 1.708 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1511 reflections

  • θ = 3.0–28.1°

  • μ = 0.16 mm−1

  • T = 150 (2) K

  • Needle, colourless

  • 0.44 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.934, Tmax = 0.984

  • 4532 measured reflections

  • 2405 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.018

  • θmax = 28.3°

  • h = −6 → 6

  • k = −11 → 10

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.05

  • 2405 reflections

  • 212 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0364P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H11⋯O2i 0.86 (3) 2.13 (3) 2.870 (2) 143 (2)
N12—H12⋯O2ii 0.91 (2) 1.99 (2) 2.889 (2) 172 (2)
N13—H13⋯N3ii 0.91 (3) 2.01 (3) 2.922 (2) 175 (2)
N1—H1⋯O21iii 0.83 (2) 1.95 (2) 2.775 (2) 173 (2)
N4—H2⋯O14ii 0.88 (2) 2.07 (2) 2.9482 (19) 177 (2)
N4—H3⋯O14 0.91 (3) 2.01 (2) 2.8285 (19) 149 (2)
O21—H21⋯N11 0.84 (3) 1.94 (3) 2.785 (2) 177 (2)
O21—H22⋯O2iv 0.81 (3) 2.03 (3) 2.826 (2) 170 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) -x+2, -y, -z+1; (iii) x, y-1, z-1; (iv) x-1, y+1, z+1.

All H atoms were located [C—H = 0.95 (2)–0.96 (2), N—H = 0.83 (2)–0.91 (3) and O—H = 0.95 (2)] in a difference map and were refined isotropically.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

4-Amino-5-fluoropyrimidin-2(1H)-one–2-amino-5-fluoropyrimidin-4(3H)-one–water (1/1/1) top
Crystal data top
C4H4FN3O·C4H4FN3O·H2OZ = 2
Mr = 276.22F(000) = 284
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4122 (16) ÅCell parameters from 1511 reflections
b = 8.447 (2) Åθ = 3.0–28.1°
c = 12.083 (4) ŵ = 0.16 mm1
α = 89.454 (5)°T = 150 K
β = 85.718 (5)°Lathe, colourless
γ = 77.096 (4)°0.44 × 0.14 × 0.11 mm
V = 536.9 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω rotation with narrow frames scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.934, Tmax = 0.984k = 1110
4532 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.123All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0364P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F150.24930 (19)0.40288 (12)0.53690 (9)0.0329 (3)
O140.7285 (2)0.21415 (14)0.57184 (10)0.0266 (3)
N110.4124 (3)0.59592 (17)0.77839 (12)0.0252 (3)
N120.7754 (3)0.5260 (2)0.87373 (13)0.0299 (4)
H110.710 (4)0.600 (3)0.923 (2)0.045 (6)*
H120.917 (4)0.449 (3)0.8860 (19)0.044 (6)*
N130.7418 (3)0.37337 (17)0.72161 (11)0.0216 (3)
H130.894 (5)0.306 (3)0.735 (2)0.053 (7)*
C120.6385 (3)0.50003 (19)0.79159 (14)0.0217 (3)
C140.6254 (3)0.33173 (19)0.63165 (13)0.0202 (3)
H140.127 (4)0.631 (3)0.6791 (18)0.038 (6)*
C150.3812 (3)0.4364 (2)0.62024 (14)0.0230 (4)
C160.2874 (3)0.5612 (2)0.69146 (15)0.0246 (4)
F50.29725 (18)0.17388 (12)0.35499 (8)0.0297 (3)
O20.7937 (2)0.28047 (14)0.06559 (9)0.0270 (3)
N10.4410 (3)0.08912 (17)0.11725 (12)0.0222 (3)
H10.376 (4)0.113 (3)0.0611 (19)0.036 (6)*
N30.7899 (2)0.14513 (16)0.22807 (11)0.0205 (3)
N40.7783 (3)0.00182 (18)0.38789 (12)0.0250 (3)
H20.925 (4)0.065 (3)0.3978 (17)0.035 (6)*
H30.703 (4)0.082 (3)0.438 (2)0.044 (6)*
C20.6802 (3)0.17508 (19)0.13548 (13)0.0201 (3)
C40.6684 (3)0.02817 (19)0.29956 (13)0.0195 (3)
C50.4193 (3)0.06105 (19)0.27865 (13)0.0214 (4)
C60.3091 (3)0.0281 (2)0.18955 (14)0.0229 (4)
H40.144 (4)0.079 (2)0.1689 (17)0.033 (5)*
O210.1925 (2)0.82377 (16)0.94260 (11)0.0270 (3)
H210.261 (4)0.757 (3)0.892 (2)0.043 (6)*
H220.089 (5)0.783 (3)0.977 (2)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F150.0266 (5)0.0369 (6)0.0339 (6)0.0006 (4)0.0139 (4)0.0056 (5)
O140.0257 (6)0.0249 (6)0.0269 (7)0.0010 (5)0.0069 (5)0.0079 (5)
N110.0226 (7)0.0216 (7)0.0285 (8)0.0006 (6)0.0002 (6)0.0039 (6)
N120.0289 (8)0.0285 (8)0.0279 (8)0.0050 (7)0.0069 (6)0.0128 (7)
N130.0181 (7)0.0224 (7)0.0222 (7)0.0010 (6)0.0048 (5)0.0033 (6)
C120.0215 (8)0.0187 (8)0.0234 (8)0.0020 (6)0.0009 (6)0.0031 (6)
C140.0209 (8)0.0192 (8)0.0198 (8)0.0031 (6)0.0019 (6)0.0012 (6)
C150.0205 (8)0.0238 (8)0.0247 (8)0.0040 (6)0.0055 (6)0.0007 (7)
C160.0188 (8)0.0225 (8)0.0300 (9)0.0007 (6)0.0019 (7)0.0025 (7)
F50.0241 (5)0.0311 (6)0.0284 (5)0.0057 (4)0.0014 (4)0.0101 (4)
O20.0236 (6)0.0320 (7)0.0237 (6)0.0013 (5)0.0037 (5)0.0104 (5)
N10.0191 (7)0.0273 (7)0.0196 (7)0.0027 (6)0.0055 (5)0.0009 (6)
N30.0180 (6)0.0220 (7)0.0199 (7)0.0002 (5)0.0035 (5)0.0028 (5)
N40.0216 (7)0.0265 (7)0.0230 (7)0.0046 (6)0.0064 (6)0.0092 (6)
C20.0190 (7)0.0223 (8)0.0186 (8)0.0038 (6)0.0012 (6)0.0002 (6)
C40.0191 (7)0.0194 (7)0.0189 (8)0.0021 (6)0.0014 (6)0.0012 (6)
C50.0188 (8)0.0216 (8)0.0211 (8)0.0006 (6)0.0008 (6)0.0025 (6)
C60.0168 (7)0.0262 (8)0.0241 (8)0.0010 (6)0.0025 (6)0.0013 (7)
O210.0218 (6)0.0319 (7)0.0247 (7)0.0004 (5)0.0020 (5)0.0064 (6)
Geometric parameters (Å, º) top
F15—C151.3441 (19)O2—C21.2552 (19)
O14—C141.235 (2)N1—C61.364 (2)
N11—C121.328 (2)N1—C21.368 (2)
N11—C161.359 (2)N1—H10.83 (2)
N12—C121.330 (2)N3—C41.340 (2)
N12—H110.86 (3)N3—C21.356 (2)
N12—H120.91 (2)N4—C41.313 (2)
N13—C121.361 (2)N4—H20.88 (2)
N13—C141.383 (2)N4—H30.91 (3)
N13—H130.91 (3)C4—C51.429 (2)
C14—C151.432 (2)C5—C61.330 (2)
C15—C161.350 (2)C6—H40.95 (2)
C16—H140.96 (2)O21—H210.84 (3)
F5—C51.3566 (18)O21—H220.81 (3)
C12—N11—C16116.74 (14)C6—N1—H1120.8 (15)
C12—N12—H11119.5 (16)C2—N1—H1117.5 (15)
C12—N12—H12117.7 (15)C4—N3—C2120.27 (13)
H11—N12—H12121 (2)C4—N4—H2115.2 (14)
C12—N13—C14124.20 (14)C4—N4—H3122.4 (14)
C12—N13—H13120.2 (16)H2—N4—H3122 (2)
C14—N13—H13115.5 (16)O2—C2—N3121.40 (14)
N11—C12—N12120.83 (15)O2—C2—N1118.93 (15)
N11—C12—N13122.00 (15)N3—C2—N1119.67 (14)
N12—C12—N13117.17 (14)N4—C4—N3119.75 (14)
O14—C14—N13121.03 (14)N4—C4—C5121.07 (15)
O14—C14—C15126.50 (15)N3—C4—C5119.18 (15)
N13—C14—C15112.47 (14)C6—C5—F5121.80 (14)
F15—C15—C16121.88 (14)C6—C5—C4120.43 (15)
F15—C15—C14116.98 (14)F5—C5—C4117.71 (14)
C16—C15—C14121.13 (15)C5—C6—N1118.72 (15)
C15—C16—N11123.46 (15)C5—C6—H4126.9 (13)
C15—C16—H14118.6 (14)N1—C6—H4114.3 (13)
N11—C16—H14117.9 (14)H21—O21—H22106 (2)
C6—N1—C2121.68 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H11···O2i0.86 (3)2.13 (3)2.870 (2)143 (2)
N12—H12···O2ii0.91 (2)1.99 (2)2.889 (2)172 (2)
N13—H13···N3ii0.91 (3)2.01 (3)2.922 (2)175 (2)
N1—H1···O21iii0.83 (2)1.95 (2)2.775 (2)173 (2)
N4—H2···O14ii0.88 (2)2.07 (2)2.9482 (19)177 (2)
N4—H3···O140.91 (3)2.01 (2)2.8285 (19)148.9 (19)
O21—H21···N110.84 (3)1.94 (3)2.785 (2)177 (2)
O21—H22···O2iv0.81 (3)2.03 (3)2.826 (2)170 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z1; (iv) x1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk).

References

First citationBruker (1998). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLouis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds