Download citation
Download citation
link to html
In the title compound, [Ti(C13H14)F2], the coordination polyhedron around the Ti atom is a distorted tetra­hedron defined by the centroids of the cyclo­penta­dien­yl rings and the two F atoms. The Ti–ring centroid (Cg) distances are 2.0558 (7) and 2.0567 (8) Å. The presence of a short carbon bridge linking the cyclo­penta­dien­yl rings constrains the Cg—Ti—Cg angle to a value of 121.50 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805017095/hb6211sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805017095/hb6211Isup2.hkl
Contains datablock I

CCDC reference: 277261

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.030
  • wR factor = 0.087
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Difluoro(η5,η5-propane-2,2-diyldicyclopentadienyl)titanium(IV) top
Crystal data top
[Ti(C13H14)F2]F(000) = 528
Mr = 256.14Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2549 reflections
a = 7.9700 (2) Åθ = 1–27.5°
b = 14.3740 (3) ŵ = 0.79 mm1
c = 9.5750 (2) ÅT = 150 K
β = 100.3350 (15)°Prism, orange
V = 1079.12 (4) Å30.25 × 0.25 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2163 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
Detector resolution: 9.091 pixels mm-1h = 1010
φ and ω scans to fill the Ewald spherek = 1818
17813 measured reflectionsl = 1212
2478 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.5257P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.28927 (3)0.004903 (17)0.20313 (3)0.01659 (11)
F10.49923 (12)0.06172 (7)0.26205 (11)0.0276 (2)
F20.21765 (12)0.07025 (6)0.03474 (9)0.0225 (2)
C10.24140 (19)0.15229 (10)0.23886 (16)0.0181 (3)
C20.4208 (2)0.13866 (10)0.26719 (18)0.0228 (3)
H20.49080.14350.35570.027*
C30.4752 (2)0.11658 (11)0.1387 (2)0.0274 (4)
H30.58700.10550.12770.033*
C40.3317 (2)0.11435 (11)0.03067 (18)0.0255 (3)
H40.33150.10180.06460.031*
C50.1865 (2)0.13451 (10)0.09170 (16)0.0201 (3)
H50.07420.13590.04360.024*
C60.11436 (19)0.04372 (10)0.36068 (16)0.0178 (3)
C70.2419 (2)0.01386 (11)0.43924 (16)0.0209 (3)
H70.32770.00550.51250.025*
C80.2161 (2)0.10609 (11)0.38693 (17)0.0241 (3)
H80.28120.15770.42070.029*
C90.0757 (2)0.10586 (10)0.27569 (17)0.0228 (3)
H90.03110.15740.22310.027*
C100.0132 (2)0.01344 (10)0.25701 (17)0.0203 (3)
H100.07800.00630.18890.024*
C110.1261 (2)0.14966 (10)0.34971 (16)0.0187 (3)
C120.0471 (2)0.19505 (11)0.29601 (18)0.0248 (3)
H12A0.03140.26010.27990.037*
H12B0.11900.18750.36560.037*
H12C0.09970.16600.20880.037*
C130.2107 (2)0.19457 (11)0.48930 (17)0.0252 (3)
H13A0.31790.16460.52330.038*
H13B0.13780.18790.55830.038*
H13C0.22960.25940.47400.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01849 (17)0.01446 (15)0.01660 (17)0.00030 (9)0.00254 (11)0.00073 (9)
F10.0235 (5)0.0268 (5)0.0311 (5)0.0064 (4)0.0014 (4)0.0005 (4)
F20.0280 (5)0.0204 (4)0.0190 (4)0.0014 (4)0.0039 (4)0.0028 (3)
C10.0234 (7)0.0105 (6)0.0202 (7)0.0014 (5)0.0036 (6)0.0006 (5)
C20.0219 (8)0.0175 (7)0.0281 (8)0.0036 (6)0.0023 (6)0.0024 (6)
C30.0253 (8)0.0208 (7)0.0390 (10)0.0045 (6)0.0135 (7)0.0012 (7)
C40.0342 (9)0.0196 (7)0.0257 (8)0.0040 (6)0.0134 (7)0.0004 (6)
C50.0260 (8)0.0159 (7)0.0185 (7)0.0004 (6)0.0038 (6)0.0027 (5)
C60.0202 (7)0.0192 (7)0.0151 (7)0.0008 (6)0.0059 (6)0.0002 (5)
C70.0266 (8)0.0210 (7)0.0143 (7)0.0002 (6)0.0019 (6)0.0019 (6)
C80.0338 (9)0.0170 (7)0.0219 (8)0.0019 (6)0.0065 (7)0.0042 (6)
C90.0312 (8)0.0174 (7)0.0213 (8)0.0056 (6)0.0085 (6)0.0005 (6)
C100.0208 (8)0.0206 (7)0.0200 (8)0.0035 (6)0.0054 (6)0.0006 (6)
C110.0231 (7)0.0155 (7)0.0175 (7)0.0009 (5)0.0036 (6)0.0007 (5)
C120.0258 (8)0.0237 (8)0.0258 (8)0.0052 (6)0.0072 (6)0.0025 (6)
C130.0335 (9)0.0206 (7)0.0215 (8)0.0009 (6)0.0049 (7)0.0035 (6)
Geometric parameters (Å, º) top
Ti1—F11.8565 (9)C4—H40.9300
Ti1—F21.8648 (9)C5—H50.9300
Ti1—C12.3270 (14)C6—C71.418 (2)
Ti1—C62.3371 (15)C6—C101.422 (2)
Ti1—C22.3456 (15)C6—C111.530 (2)
Ti1—C52.3477 (15)C7—C81.419 (2)
Ti1—C102.3513 (16)C7—H70.9300
Ti1—C72.3614 (16)C8—C91.399 (2)
Ti1—C92.4308 (16)C8—H80.9300
Ti1—C82.4333 (16)C9—C101.419 (2)
Ti1—C32.4400 (16)C9—H90.9300
Ti1—C42.4453 (16)C10—H100.9300
C1—C21.420 (2)C11—C131.528 (2)
C1—C51.422 (2)C11—C121.531 (2)
C1—C111.524 (2)C12—H12A0.9600
C2—C31.412 (2)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.398 (2)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.417 (2)C13—H13C0.9600
F1—Ti1—F299.24 (4)C3—C2—C1108.68 (14)
F1—Ti1—C1123.03 (5)C3—C2—Ti176.53 (9)
F2—Ti1—C1125.69 (5)C1—C2—Ti171.59 (8)
F1—Ti1—C6123.02 (5)C3—C2—H2125.7
F2—Ti1—C6125.68 (5)C1—C2—H2125.7
C1—Ti1—C658.82 (5)Ti1—C2—H2118.1
F1—Ti1—C288.36 (5)C4—C3—C2108.15 (15)
F2—Ti1—C2136.25 (5)C4—C3—Ti173.58 (9)
C1—Ti1—C235.38 (5)C2—C3—Ti169.21 (9)
C6—Ti1—C281.86 (6)C4—C3—H3125.9
F1—Ti1—C5137.35 (5)C2—C3—H3125.9
F2—Ti1—C590.53 (5)Ti1—C3—H3122.9
C1—Ti1—C535.41 (5)C3—C4—C5108.10 (15)
C6—Ti1—C580.69 (5)C3—C4—Ti173.17 (9)
C2—Ti1—C558.06 (6)C5—C4—Ti169.07 (8)
F1—Ti1—C10137.58 (5)C3—C4—H4126.0
F2—Ti1—C1090.58 (5)C5—C4—H4126.0
C1—Ti1—C1080.44 (5)Ti1—C4—H4123.4
C6—Ti1—C1035.32 (5)C4—C5—C1108.46 (14)
C2—Ti1—C10112.35 (5)C4—C5—Ti176.62 (9)
C5—Ti1—C1083.13 (5)C1—C5—Ti171.50 (8)
F1—Ti1—C788.58 (5)C4—C5—H5125.8
F2—Ti1—C7136.35 (5)C1—C5—H5125.8
C1—Ti1—C781.58 (5)Ti1—C5—H5118.0
C6—Ti1—C735.12 (5)C7—C6—C10107.20 (13)
C2—Ti1—C786.46 (6)C7—C6—C11124.77 (14)
C5—Ti1—C7112.27 (5)C10—C6—C11124.12 (14)
C10—Ti1—C758.03 (6)C7—C6—Ti173.38 (9)
F1—Ti1—C9106.84 (5)C10—C6—Ti172.89 (9)
F2—Ti1—C979.92 (5)C11—C6—Ti1101.67 (9)
C1—Ti1—C9113.33 (5)C6—C7—C8108.26 (14)
C6—Ti1—C957.64 (5)C6—C7—Ti171.50 (9)
C2—Ti1—C9138.88 (6)C8—C7—Ti175.58 (9)
C5—Ti1—C9115.74 (5)C6—C7—H7125.9
C10—Ti1—C934.46 (5)C8—C7—H7125.9
C7—Ti1—C956.87 (5)Ti1—C7—H7118.9
F1—Ti1—C880.63 (5)C9—C8—C7108.18 (14)
F2—Ti1—C8104.38 (5)C9—C8—Ti173.18 (9)
C1—Ti1—C8114.03 (6)C7—C8—Ti170.03 (9)
C6—Ti1—C857.57 (5)C9—C8—H8125.9
C2—Ti1—C8119.38 (6)C7—C8—H8125.9
C5—Ti1—C8136.85 (6)Ti1—C8—H8122.5
C10—Ti1—C856.97 (6)C8—C9—C10108.23 (14)
C7—Ti1—C834.39 (5)C8—C9—Ti173.38 (9)
C9—Ti1—C833.44 (6)C10—C9—Ti169.70 (9)
F1—Ti1—C380.60 (5)C8—C9—H9125.9
F2—Ti1—C3104.32 (5)C10—C9—H9125.9
C1—Ti1—C357.67 (5)Ti1—C9—H9122.7
C6—Ti1—C3114.13 (6)C9—C10—C6108.10 (14)
C2—Ti1—C334.26 (6)C9—C10—Ti175.83 (9)
C5—Ti1—C356.79 (6)C6—C10—Ti171.79 (9)
C10—Ti1—C3136.67 (6)C9—C10—H10126.0
C7—Ti1—C3119.33 (6)C6—C10—H10126.0
C9—Ti1—C3170.95 (5)Ti1—C10—H10118.3
C8—Ti1—C3147.78 (6)C1—C11—C13111.85 (13)
F1—Ti1—C4106.70 (5)C1—C11—C697.16 (11)
F2—Ti1—C480.05 (5)C13—C11—C6112.54 (13)
C1—Ti1—C457.64 (5)C1—C11—C12112.07 (13)
C6—Ti1—C4113.39 (5)C13—C11—C12110.11 (13)
C2—Ti1—C456.67 (6)C6—C11—C12112.61 (13)
C5—Ti1—C434.31 (6)C11—C12—H12A109.5
C10—Ti1—C4115.65 (6)C11—C12—H12B109.5
C7—Ti1—C4138.58 (5)H12A—C12—H12B109.5
C9—Ti1—C4143.14 (6)C11—C12—H12C109.5
C8—Ti1—C4170.93 (5)H12A—C12—H12C109.5
C3—Ti1—C433.25 (6)H12B—C12—H12C109.5
C2—C1—C5106.56 (14)C11—C13—H13A109.5
C2—C1—C11125.14 (14)C11—C13—H13B109.5
C5—C1—C11124.69 (13)H13A—C13—H13B109.5
C2—C1—Ti173.03 (8)C11—C13—H13C109.5
C5—C1—Ti173.09 (8)H13A—C13—H13C109.5
C11—C1—Ti1102.33 (9)H13B—C13—H13C109.5
Selected geometric parameters (Å, °). top
Ti1-Cg12.0558 (7)Cg1-Ti1-Cg2121.50 (3)
Ti1-Cg22.0567 (8)F1-Ti1-F299.24 (4)
Ti1-F11.8565 (10)C1-C11-C697.15 (12)
Ti1-F21.8648 (9)C12-C11-C13110.11 (13)
Pr1-C1-C1115.14 (10)Pr2-C6-C1116.31 (10)
Pr1-Cg1-Ti185.99 (7)Pr2-Cg2-Ti186.74 (7)
Pr1-Pr265.76 (9)
a) Cg1 is the centroid of the cyclopentadienyl ring C1-C5.

b) Cg2 is the centroid of the cyclopentadienyl ring C6-C10.

c) Pr1 is the ring plane defined by atoms C1-C5.

d) Pr2 is the ring plane defined by atoms C5-C10.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds