### metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

#### Jonathan C. Burley<sup>a</sup>\* and Timothy J. Prior<sup>b</sup>

<sup>a</sup>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, and <sup>b</sup>Synchrotron Radiation Department, CCLRC Daresbury Laboratories, Warrington, Cheshire WA4 4AD, England

Correspondence e-mail: jb442@cam.ac.uk

#### **Key indicators**

Single-crystal X-ray study T = 180 KMean  $\sigma$ (C–C) = 0.010 Å Disorder in main residue R factor = 0.079 wR factor = 0.240 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

### $\mu_2$ -Aqua-bis( $\mu_2$ -trifluoroaceto- $\kappa^2 O, O'$ )bis[bis-(pyridine- $\kappa N$ )(trifluoroacetato- $\kappa O$ )cobalt(II)]

The title complex,  $[Co_2(C_2F_3O_2)_4(C_5H_5N)_4(H_2O)]$ , crystallizes as a neutral dinuclear molecule with two crystallographically distinct octahedrally coordinated Co<sup>II</sup> ions in the asymmetric unit. The metal ions are connected by two  $\mu_2$ -bridging trifluoroacetate ions and a single  $\mu_2$ -bridging water molecule. Each cobalt(II) coordination sphere is completed by a further trifluoroacetate ion, which coordinates in a monodentate manner, and also by two pyridine molecules, resulting in local *cis*-CoN<sub>2</sub>O<sub>4</sub> coordination. The water molecule H atoms participate in intramolecular O-H···O hydrogen bonds to the pendant O atoms of the monodentate trifluoroacetate ligands.

#### Comment

Complexes of divalent transition metals with mixed N-donor and acetate-related ligands have been studied widely due to their close structural analogy with reduced non-heme iron(II) proteins (Hagen *et al.*, 1993). During the course of investigations into possible complexes formed by cobalt(II), pyridine and acetate derivatives, the title compound, (I) (Fig. 1), was isolated. The red crystals consist of neutral dinuclear cobalt(II) molecules in which each cobalt ion is coordinated (Table 1) by two pyridine N atoms and one monodentate trifluoroacetate ion. Two further trifluoroacetate ions bridge the metal nuclei in a  $\mu_2$ -manner, and the coordination shell is completed by a single  $\mu_2$ -bridging water molecule. The water molecule H atoms make intramolecular hydrogen bonds (Table 2) to the uncoordinated O atoms of the non-bridging trifluoroacetate ions.



The overall molecular architecture of (I) is similar to that of related compounds (Corkery & Hockless, 1997; Turpeinen *et al.*, 1987; Hagen *et al.*, 1993). The Co1–OW and Co2–OW distances of 2.190 (3) and 2.196 (3) Å, respectively, are the same within experimental uncertainty. The Co–N distances for the pyridine molecules (weak  $\pi$  acceptors) *trans* to the water O atom ( $\pi$  neutral) are significantly shorter than those *trans* to the fluoroacetate O atoms (weak  $\pi$  donor) as a result

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 17 June 2005 Accepted 21 June 2005 Online 30 June 2005



#### Figure 1

The molecular structure of (I), showing 50% displacement ellipsoids for the non-H atoms. The minor disorder components are indicated by dashed C–F bonds.



#### Figure 2

Packing diagrams for (I), showing the layered arrangement of molecules (left) and the plan of the layers (right).

of the well known *trans* influence [for example, Co1-N4 = 2.139 (4) Å *versus* Co1-N6 = 2.128 (4) Å]. The Co1-OW-Co2 angle is 116.86 (15)°, which is well within the expected range of values (*e.g.* Corkery & Hockless, 1997; Turpeinen *et al.*, 1997; Hagen *et al.*, 1993). There is no evidence of intermolecular hydrogen bonding or any other directional forces between the individual molecules. In terms of crystal packing, the molecules are arranged in layers in the *ab* plane (Fig. 2).

#### **Experimental**

 $CoCl_2$ ·4H<sub>2</sub>O (0.502 g) was mixed with Na<sub>2</sub>CO<sub>3</sub> (0.154 g) and distilled water (approximately 10 ml) was added with stirring. Following this, trifluoroacetic acid (1 ml) was added dropwise. Pyridine (approximately 1 ml) was added and the mixture was reduced to dryness at 343 K on a rotary evaporator. Further pyridine (5 ml) was added and a pink precipitate was formed by addition of hexane (30 ml). The precipitate was dissolved in chloroform and mixed crystals (blue and

red) were grown by vapour transport of diethyl ether. The blue crystals were shown to be pyridinium trichloropyridinecobalt(II) (Hahn *et al.*, 1997) by X-ray single-crystal analysis and the red crystals the title compound, (I).

#### Crystal data

 $\begin{bmatrix} Co_2(C_2F_3O_2)_4(C_5H_5N)_4(H_2O) \end{bmatrix}$   $M_r = 903.86$ Triclinic,  $P\overline{1}$  a = 9.4211 (19) Å b = 10.741 (2) Å c = 19.185 (4) Å  $\alpha = 78.17 (3)^{\circ}$   $\beta = 79.00 (3)^{\circ}$   $\gamma = 76.00 (3)^{\circ}$  $Y = 1823.2 (6) \text{ Å}^3$ 

#### Data collection

Nonius KappaCCD diffractometer Thin-slice  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (SORTAV; Blessing 1995)  $T_{min} = 0.775, T_{max} = 0.890$ 19699 measured reflections 8305 independent reflections

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.079$   $wR(F^2) = 0.240$  S = 1.058305 reflections 483 parameters H atoms treated by a mixture of independent and constrained refinement

Z = 2  $D_x = 1.647 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 13594 reflections  $\theta = 1-27.5^{\circ}$   $\mu = 1.02 \text{ mm}^{-1}$  T = 180 (2) KBlock, red  $0.28 \times 0.10 \times 0.10 \text{ mm}$ 

6603 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.044$   $\theta_{\text{max}} = 27.5^{\circ}$   $h = -12 \rightarrow 12$   $k = -13 \rightarrow 13$  $l = -20 \rightarrow 24$ 

| $w = 1/[\sigma^2(F_o^2) + (0.128P)^2]$                     |
|------------------------------------------------------------|
| + 5.9158 <i>P</i> ]                                        |
| where $P = (F_0^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.007$                        |
| $\Delta \rho_{\rm max} = 1.69 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -1.14 \text{ e} \text{ \AA}^{-3}$ |

### Table 1 Selected geometric parameters (Å, °).

| Co1-OW     | 2.190 (3)   | Co2-OW    | 2.196 (3) |
|------------|-------------|-----------|-----------|
| Co1-O2A    | 2.070 (4)   | Co2-O1A   | 2.095 (4) |
| Co1-O8A    | 2.092 (4)   | Co2-O3A   | 2.074 (4) |
| Co1-O3B    | 2.098 (4)   | Co2 - O2B | 2.095 (4) |
| Co1-N6     | 2.128 (4)   | Co2-N5    | 2.124 (4) |
| Co1-N4     | 2.139 (4)   | Co2-N7    | 2.138 (4) |
|            |             |           |           |
| Co1-OW-Co2 | 116.86 (15) |           |           |

| Tal | ble | 2 |  |
|-----|-----|---|--|
|     |     |   |  |

| Hydrogen-bond geometry (A. °). |  |
|--------------------------------|--|
|--------------------------------|--|

| $D - H \cdots A$  | <i>D</i> -H | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------|-------------|--------------|--------------|--------------------------------------|
| $OW-H1\cdots O8B$ | 0.96 (5)    | 1.67 (5)     | 2.616 (5)    | 165 (5)                              |
| $OW-H2\cdots O1B$ | 0.96 (5)    | 1.68 (5)     | 2.610 (5)    | 161 (4)                              |

Difference maps indicated that the F atoms attached to C2B and C8B were disordered over two sets of positions. Refined occupancies (sum constrained to unity) of 0.667 (6):0.333 (6) and 0.601 (6):0.399 (6) resulted for the major and minor components of C2B and C8B, respectively. The disordered F atoms were modelled with isotropic displacement parameters. The F atoms around C1B and C3B may also be slightly disordered but this was not resolved in the present data. The water molecule H atoms were located in a difference map and refined with distance restraints (O-H = 0.96 Å). Pyridine H atoms were placed in idealized locations (C-H = 0.93 Å)

and refined as riding with the constraint  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm carrier})$  applied. The higest peak and depest hole in are located 1.51 Å from atom F1*C* and 0.49 Å from F2*A*, respectively.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

JB is grateful to Jesus College, Cambridge for the award of a Junior Research Fellowship.

#### References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Corkery, R. W. & Hockless, D. C. R. (1997). Acta Cryst. C53, 840-843.
- Hagen, K. S, Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321–1324.
- Hahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Turpeinen, U., Hamalainen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603-1610.

Acta Cryst. (2005). E61, m1422-m1424 [https://doi.org/10.1107/S1600536805019586]

# $\mu_2$ -Aqua-bis( $\mu_2$ -trifluoroaceto- $\kappa^2 O, O'$ )bis[bis(pyridine- $\kappa N$ )(trifluoroacetato- $\kappa O$ )cobalt(II)]

### Jonathan C. Burley and Timothy J. Prior

 $\mu_2$ -Aqua-bis( $\mu_2$ -trifluoroaceto- $\kappa^2 O, O'$ )bis[(trifluoroacetato- $\kappa O$ )bis(pyridine- $\kappa N$ )cobalt(II)]

#### Crystal data

 $[Co_{2}(C_{2}F_{3}O_{2})_{4}(C_{5}H_{5}N)_{4}(H_{2}O)]$   $M_{r} = 903.86$ Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 9.4211 (19) Å b = 10.741 (2) Å c = 19.185 (4) Å  $a = 78.17 (3)^{\circ}$   $\beta = 79.00 (3)^{\circ}$   $\gamma = 76.00 (3)^{\circ}$  $V = 1823.2 (6) \text{ Å}^{3}$ 

#### Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Thin–slice  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (SORTAV; Blessing 1995)  $T_{\min} = 0.775, T_{\max} = 0.890$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.079$  $wR(F^2) = 0.240$ S = 1.058305 reflections 483 parameters 16 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 904  $D_x = 1.647 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13594 reflections  $\theta = 1-27.5^{\circ}$   $\mu = 1.03 \text{ mm}^{-1}$ T = 180 K Block, red  $0.28 \times 0.10 \times 0.10 \text{ mm}$ 

19699 measured reflections 8305 independent reflections 6603 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.044$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.1^{\circ}$  $h = -12 \rightarrow 12$  $k = -13 \rightarrow 13$  $l = -20 \rightarrow 24$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.128P)^2 + 5.9158P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.007$  $\Delta\rho_{max} = 1.69$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -1.14$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|-------------|--------------|-----------------------------|-----------|
| OW  | 0.8111 (4)  | 0.5602 (3)  | 0.80300 (17) | 0.0325 (7)                  |           |
| H1  | 0.875 (5)   | 0.495 (4)   | 0.832 (3)    | 0.049*                      |           |
| H2  | 0.731 (5)   | 0.602 (4)   | 0.835 (3)    | 0.049*                      |           |
| Co1 | 0.75575 (7) | 0.43208 (6) | 0.74168 (3)  | 0.03078 (19)                |           |
| O1A | 0.7439 (4)  | 0.8520 (4)  | 0.8004 (2)   | 0.0432 (8)                  |           |
| O1B | 0.6169 (4)  | 0.7176 (4)  | 0.8787 (2)   | 0.0449 (9)                  |           |
| C1A | 0.6472 (6)  | 0.8250 (5)  | 0.8512 (3)   | 0.0376 (10)                 |           |
| F1A | 0.4503 (6)  | 0.9173 (5)  | 0.9354 (3)   | 0.108 (2)                   |           |
| F1C | 0.6181 (9)  | 1.0246 (8)  | 0.8887 (6)   | 0.182 (5)                   |           |
| C1B | 0.5541 (10) | 0.9408 (7)  | 0.8851 (5)   | 0.081 (3)                   |           |
| F1B | 0.4701 (11) | 1.0206 (8)  | 0.8345 (5)   | 0.191 (5)                   |           |
| Co2 | 0.90291 (7) | 0.72589 (6) | 0.74067 (3)  | 0.03106 (19)                |           |
| O2A | 0.6358 (4)  | 0.5935 (3)  | 0.6830 (2)   | 0.0441 (9)                  |           |
| O2B | 0.7542 (5)  | 0.7579 (4)  | 0.6672 (2)   | 0.0480 (9)                  |           |
| C2A | 0.6589 (6)  | 0.7035 (5)  | 0.6582 (3)   | 0.0359 (10)                 |           |
| C2B | 0.5493 (8)  | 0.7866 (6)  | 0.6081 (4)   | 0.0609 (18)                 |           |
| F2A | 0.4625 (9)  | 0.7260 (8)  | 0.5897 (5)   | 0.0837 (11)*                | 0.667 (6) |
| F2B | 0.6149 (9)  | 0.8563 (8)  | 0.5503 (4)   | 0.0837 (11)*                | 0.667 (6) |
| F2C | 0.4552 (8)  | 0.8798 (7)  | 0.6448 (4)   | 0.0837 (11)*                | 0.667 (6) |
| F2D | 0.5610 (18) | 0.7183 (14) | 0.5521 (8)   | 0.0837 (11)*                | 0.333 (6) |
| F2E | 0.5702 (19) | 0.8963 (14) | 0.5738 (9)   | 0.0837 (11)*                | 0.333 (6) |
| F2F | 0.4173 (16) | 0.7542 (16) | 0.6202 (9)   | 0.0837 (11)*                | 0.333 (6) |
| O3B | 0.9538 (4)  | 0.4397 (4)  | 0.6707 (2)   | 0.0486 (9)                  |           |
| O3A | 1.0612 (4)  | 0.5987 (4)  | 0.6834 (2)   | 0.0435 (8)                  |           |
| C3A | 1.0552 (6)  | 0.4995 (5)  | 0.6616 (3)   | 0.0351 (10)                 |           |
| F3B | 1.3030 (5)  | 0.5039 (5)  | 0.6050 (4)   | 0.103 (2)                   |           |
| F3A | 1.2554 (6)  | 0.3208 (5)  | 0.6491 (4)   | 0.122 (3)                   |           |
| C3B | 1.1984 (7)  | 0.4383 (6)  | 0.6168 (4)   | 0.0582 (17)                 |           |
| F3C | 1.1738 (8)  | 0.4187 (9)  | 0.5557 (3)   | 0.137 (3)                   |           |
| N4  | 0.5589 (5)  | 0.4119 (4)  | 0.8160 (2)   | 0.0401 (9)                  |           |
| O8A | 0.8737 (4)  | 0.2687 (3)  | 0.8022 (2)   | 0.0419 (8)                  |           |
| O8B | 0.9599 (5)  | 0.3560 (4)  | 0.8782 (2)   | 0.0475 (9)                  |           |
| C8A | 0.9430 (6)  | 0.2653 (5)  | 0.8516 (3)   | 0.0390 (11)                 |           |
| C8B | 1.0187 (10) | 0.1290 (7)  | 0.8844 (4)   | 0.077 (2)                   |           |
| C4A | 0.4348 (6)  | 0.4159 (6)  | 0.7909 (3)   | 0.0486 (13)                 |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H4A | 0.4332      | 0.4391      | 0.7405     | 0.058*       |           |
|-----|-------------|-------------|------------|--------------|-----------|
| C4B | 0.3082 (7)  | 0.3877 (7)  | 0.8353 (4) | 0.0615 (17)  |           |
| H4B | 0.2223      | 0.3898      | 0.8157     | 0.074*       |           |
| C4E | 0.5572 (7)  | 0.3835 (6)  | 0.8873 (3) | 0.0507 (13)  |           |
| H4E | 0.6440      | 0.3822      | 0.9060     | 0.061*       |           |
| C4C | 0.3096 (8)  | 0.3570 (8)  | 0.9075 (5) | 0.071 (2)    |           |
| H4C | 0.2246      | 0.3363      | 0.9391     | 0.085*       |           |
| C4D | 0.4353 (8)  | 0.3561 (8)  | 0.9346 (4) | 0.0657 (18)  |           |
| H4D | 0.4376      | 0.3368      | 0.9850     | 0.079*       |           |
| N5  | 0.9907 (5)  | 0.8835 (4)  | 0.6762 (2) | 0.0359 (9)   |           |
| C5A | 1.0482 (7)  | 0.8827 (6)  | 0.6064 (3) | 0.0495 (13)  |           |
| H5A | 1.0442      | 0.8112      | 0.5853     | 0.059*       |           |
| C5E | 0.9932 (6)  | 0.9868 (5)  | 0.7033 (3) | 0.0454 (12)  |           |
| H5E | 0.9520      | 0.9902      | 0.7523     | 0.054*       |           |
| C5B | 1.1123 (8)  | 0.9795 (7)  | 0.5641 (3) | 0.0597 (16)  |           |
| H5B | 1.1548      | 0.9737      | 0.5156     | 0.072*       |           |
| C5C | 1.1137 (8)  | 1.0870 (7)  | 0.5942 (4) | 0.0622 (16)* |           |
| C5D | 1.0530 (8)  | 1.0900 (6)  | 0.6637 (4) | 0.0597 (17)  |           |
| H5D | 1.0513      | 1.1625      | 0.6853     | 0.072*       |           |
| H5C | 1.1556      | 1.1551      | 0.5658     | 0.072*       |           |
| N6  | 0.7082 (5)  | 0.3138 (4)  | 0.6763 (2) | 0.0361 (9)   |           |
| C6A | 0.6750 (7)  | 0.1987 (5)  | 0.7047 (3) | 0.0457 (12)  |           |
| H6A | 0.6788      | 0.1675      | 0.7545     | 0.055*       |           |
| C6E | 0.7040 (8)  | 0.3553 (6)  | 0.6064 (3) | 0.0515 (14)  |           |
| H6E | 0.7312      | 0.4358      | 0.5851     | 0.062*       |           |
| C6B | 0.6350 (8)  | 0.1223 (6)  | 0.6646 (4) | 0.0558 (15)  |           |
| H6B | 0.6141      | 0.0396      | 0.6863     | 0.067*       |           |
| C6C | 0.6263 (9)  | 0.1681 (7)  | 0.5935 (4) | 0.0636 (18)  |           |
| H6C | 0.5961      | 0.1188      | 0.5653     | 0.076*       |           |
| C6D | 0.6613 (9)  | 0.2861 (7)  | 0.5629 (4) | 0.0653 (19)  |           |
| H6D | 0.6566      | 0.3196      | 0.5134     | 0.078*       |           |
| N7  | 1.0523 (5)  | 0.7046 (4)  | 0.8154 (2) | 0.0395 (9)   |           |
| C7A | 1.0107 (7)  | 0.6884 (6)  | 0.8869 (3) | 0.0491 (13)  |           |
| H7A | 0.9130      | 0.6771      | 0.9056     | 0.059*       |           |
| C7E | 1.1934 (6)  | 0.7171 (6)  | 0.7901 (4) | 0.0492 (13)  |           |
| H7E | 1.2260      | 0.7259      | 0.7397     | 0.059*       |           |
| C7D | 1.2906 (7)  | 0.7176 (8)  | 0.8348 (5) | 0.0659 (19)  |           |
| H7D | 1.3885      | 0.7275      | 0.8153     | 0.079*       |           |
| C7B | 1.1037 (9)  | 0.6876 (8)  | 0.9345 (4) | 0.0683 (19)  |           |
| H7B | 1.0708      | 0.6761      | 0.9849     | 0.082*       |           |
| C7C | 1.2463 (9)  | 0.7039 (8)  | 0.9070 (5) | 0.072 (2)    |           |
| H7C | 1.3124      | 0.7055      | 0.9384     | 0.086*       |           |
| F8A | 1.0761 (11) | 0.1202 (10) | 0.9415 (5) | 0.0867 (12)* | 0.601 (6) |
| F8B | 0.9509 (11) | 0.0371 (8)  | 0.8859 (5) | 0.0867 (12)* | 0.601 (6) |
| F8C | 1.1380 (10) | 0.0858 (9)  | 0.8306 (5) | 0.0867 (12)* | 0.601 (6) |
| F8D | 0.9046 (14) | 0.0914 (13) | 0.9388 (7) | 0.0867 (12)* | 0.399 (6) |
| F8E | 1.0324 (16) | 0.0358 (12) | 0.8542 (7) | 0.0867 (12)* | 0.399 (6) |
| F8F | 1.1253 (15) | 0.1243 (15) | 0.9209 (8) | 0.0867 (12)* | 0.399 (6) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| OW  | 0.0359 (17) | 0.0322 (16) | 0.0318 (16) | -0.0106 (13) | -0.0049 (13) | -0.0069 (13) |
| Col | 0.0328 (3)  | 0.0318 (3)  | 0.0303 (3)  | -0.0115 (2)  | -0.0053 (2)  | -0.0046 (2)  |
| O1A | 0.042 (2)   | 0.0395 (19) | 0.044 (2)   | -0.0085 (15) | 0.0040 (16)  | -0.0087 (15) |
| O1B | 0.041 (2)   | 0.044 (2)   | 0.050 (2)   | -0.0133 (16) | 0.0034 (16)  | -0.0105 (16) |
| C1A | 0.035 (2)   | 0.043 (3)   | 0.037 (2)   | -0.009 (2)   | -0.002(2)    | -0.012 (2)   |
| F1A | 0.110 (4)   | 0.076 (3)   | 0.109 (4)   | -0.014 (3)   | 0.064 (3)    | -0.032 (3)   |
| F1C | 0.132 (6)   | 0.155 (7)   | 0.292 (11)  | -0.070 (5)   | 0.087 (7)    | -0.176 (8)   |
| C1B | 0.087 (6)   | 0.048 (4)   | 0.095 (6)   | -0.020 (4)   | 0.037 (5)    | -0.026 (4)   |
| F1B | 0.178 (8)   | 0.113 (6)   | 0.184 (8)   | 0.073 (6)    | 0.044 (7)    | 0.003 (6)    |
| Co2 | 0.0314 (3)  | 0.0319 (3)  | 0.0330 (3)  | -0.0106 (2)  | -0.0054 (2)  | -0.0071 (2)  |
| O2A | 0.050(2)    | 0.0360 (18) | 0.051 (2)   | -0.0164 (16) | -0.0219 (18) | 0.0035 (15)  |
| O2B | 0.054 (2)   | 0.047 (2)   | 0.053 (2)   | -0.0246 (18) | -0.0252 (19) | 0.0020 (17)  |
| C2A | 0.039 (3)   | 0.038 (2)   | 0.034 (2)   | -0.010 (2)   | -0.0078 (19) | -0.0083 (19) |
| C2B | 0.084 (5)   | 0.048 (3)   | 0.066 (4)   | -0.036 (3)   | -0.046 (4)   | 0.014 (3)    |
| O3B | 0.047 (2)   | 0.053 (2)   | 0.051 (2)   | -0.0250 (18) | 0.0100 (17)  | -0.0207 (18) |
| O3A | 0.0418 (19) | 0.0413 (19) | 0.052 (2)   | -0.0151 (15) | 0.0032 (16)  | -0.0197 (16) |
| C3A | 0.039 (2)   | 0.032 (2)   | 0.035 (2)   | -0.0125 (19) | -0.0007 (19) | -0.0056 (18) |
| F3B | 0.067 (3)   | 0.086 (3)   | 0.158 (5)   | -0.044 (3)   | 0.055 (3)    | -0.058 (3)   |
| F3A | 0.071 (3)   | 0.060 (3)   | 0.198 (7)   | 0.007 (2)    | 0.032 (4)    | -0.009 (3)   |
| C3B | 0.053 (4)   | 0.051 (3)   | 0.072 (4)   | -0.021 (3)   | 0.016 (3)    | -0.026 (3)   |
| F3C | 0.117 (5)   | 0.216 (8)   | 0.094 (4)   | -0.044 (5)   | 0.039 (4)    | -0.099 (5)   |
| N4  | 0.034 (2)   | 0.046 (2)   | 0.042 (2)   | -0.0141 (18) | -0.0018 (17) | -0.0067 (18) |
| O8A | 0.045 (2)   | 0.0383 (18) | 0.044 (2)   | -0.0053 (15) | -0.0149 (16) | -0.0056 (15) |
| O8B | 0.051 (2)   | 0.042 (2)   | 0.054 (2)   | -0.0095 (17) | -0.0211 (18) | -0.0057 (17) |
| C8A | 0.035 (2)   | 0.041 (3)   | 0.039 (3)   | -0.008(2)    | -0.007(2)    | -0.001 (2)   |
| C8B | 0.107 (6)   | 0.052 (4)   | 0.082 (5)   | -0.013 (4)   | -0.055 (5)   | -0.003 (3)   |
| C4A | 0.038 (3)   | 0.058 (3)   | 0.053 (3)   | -0.016 (2)   | -0.005 (2)   | -0.011 (3)   |
| C4B | 0.036 (3)   | 0.079 (5)   | 0.075 (5)   | -0.026 (3)   | -0.001 (3)   | -0.018 (4)   |
| C4E | 0.051 (3)   | 0.056 (3)   | 0.040 (3)   | -0.014 (3)   | 0.001 (2)    | -0.002(2)    |
| C4C | 0.050 (4)   | 0.076 (5)   | 0.082 (5)   | -0.027 (3)   | 0.021 (4)    | -0.015 (4)   |
| C4D | 0.059 (4)   | 0.077 (5)   | 0.051 (4)   | -0.020 (3)   | 0.013 (3)    | -0.002 (3)   |
| N5  | 0.038 (2)   | 0.033 (2)   | 0.039 (2)   | -0.0112 (16) | -0.0059 (17) | -0.0057 (16) |
| C5A | 0.067 (4)   | 0.045 (3)   | 0.038 (3)   | -0.018 (3)   | -0.001 (3)   | -0.010 (2)   |
| C5E | 0.051 (3)   | 0.042 (3)   | 0.047 (3)   | -0.019 (2)   | 0.003 (2)    | -0.015 (2)   |
| C5B | 0.075 (4)   | 0.058 (4)   | 0.043 (3)   | -0.022 (3)   | 0.006 (3)    | -0.007 (3)   |
| C5D | 0.071 (4)   | 0.041 (3)   | 0.071 (4)   | -0.027 (3)   | 0.010 (3)    | -0.019 (3)   |
| N6  | 0.042 (2)   | 0.036 (2)   | 0.034 (2)   | -0.0137 (17) | -0.0087 (17) | -0.0051 (16) |
| C6A | 0.060 (3)   | 0.036 (3)   | 0.045 (3)   | -0.018 (2)   | -0.011 (3)   | -0.002(2)    |
| C6E | 0.078 (4)   | 0.044 (3)   | 0.039 (3)   | -0.026 (3)   | -0.010 (3)   | -0.006 (2)   |
| C6B | 0.068 (4)   | 0.042 (3)   | 0.067 (4)   | -0.023 (3)   | -0.014 (3)   | -0.013 (3)   |
| C6C | 0.085 (5)   | 0.059 (4)   | 0.063 (4)   | -0.024 (3)   | -0.022 (4)   | -0.026 (3)   |
| C6D | 0.101 (6)   | 0.066 (4)   | 0.041 (3)   | -0.030 (4)   | -0.019 (3)   | -0.014 (3)   |
| N7  | 0.034 (2)   | 0.045 (2)   | 0.042 (2)   | -0.0100 (18) | -0.0127 (18) | -0.0066 (18) |
| C7A | 0.047 (3)   | 0.062 (4)   | 0.042 (3)   | -0.013 (3)   | -0.009 (2)   | -0.014 (3)   |
| C7E | 0.040 (3)   | 0.056 (3)   | 0.055 (3)   | -0.016 (2)   | -0.011 (2)   | -0.006(3)    |

| C7D | 0.042 (3) | 0.078 (5) | 0.087 (5) | -0.023 (3) | -0.025 (3) | -0.010 (4) |
|-----|-----------|-----------|-----------|------------|------------|------------|
| C7B | 0.075 (5) | 0.086 (5) | 0.051 (4) | -0.009 (4) | -0.029 (3) | -0.020 (3) |
| C7C | 0.066 (4) | 0.082 (5) | 0.082 (5) | -0.015 (4) | -0.046 (4) | -0.015 (4) |

Geometric parameters (Å, °)

| Co1—OW  | 2.190 (3)  | C8B—F8D | 1.420 (13) |
|---------|------------|---------|------------|
| Co1—O2A | 2.070 (4)  | C8B—F8C | 1.430 (11) |
| Co1—O8A | 2.092 (4)  | C4A—C4B | 1.386 (8)  |
| Co1—O3B | 2.098 (4)  | C4A—H4A | 0.9500     |
| Co1—N6  | 2.128 (4)  | C4B—C4C | 1.358 (11) |
| Co1—N4  | 2.139 (4)  | C4B—H4B | 0.9500     |
| Co2—OW  | 2.196 (3)  | C4E—C4D | 1.373 (8)  |
| Co2—O1A | 2.095 (4)  | C4E—H4E | 0.9500     |
| Co2—O3A | 2.074 (4)  | C4C—C4D | 1.379 (11) |
| Co2—O2B | 2.095 (4)  | C4C—H4C | 0.9500     |
| Co2—N5  | 2.124 (4)  | C4D—H4D | 0.9500     |
| Co2—N7  | 2.138 (4)  | N5—C5E  | 1.325 (7)  |
| OW—H1   | 0.962 (10) | N5—C5A  | 1.346 (7)  |
| OW—H2   | 0.961 (10) | C5A—C5B | 1.369 (9)  |
| O1A—C1A | 1.240 (6)  | C5A—H5A | 0.9500     |
| O1B—C1A | 1.241 (6)  | C5E—C5D | 1.384 (8)  |
| C1A—C1B | 1.526 (8)  | C5E—H5E | 0.9500     |
| F1A—C1B | 1.270 (9)  | C5B—C5C | 1.395 (10) |
| F1C—C1B | 1.217 (10) | C5B—H5B | 0.9500     |
| C1B—F1B | 1.388 (14) | C5C—C5D | 1.351 (10) |
| O2A—C2A | 1.235 (6)  | C5C—H5C | 0.9387     |
| O2B—C2A | 1.238 (6)  | C5D—H5D | 0.9500     |
| C2A—C2B | 1.538 (8)  | N6—C6E  | 1.329 (7)  |
| C2B—F2E | 1.267 (13) | N6—C6A  | 1.330 (7)  |
| C2B—F2A | 1.295 (9)  | C6A—C6B | 1.388 (8)  |
| C2B—F2F | 1.338 (13) | С6А—Н6А | 0.9500     |
| C2B—F2B | 1.338 (9)  | C6E—C6D | 1.391 (8)  |
| C2B—F2C | 1.381 (9)  | С6Е—Н6Е | 0.9500     |
| C2B—F2D | 1.392 (13) | C6B—C6C | 1.362 (10) |
| F2D—F2F | 1.72 (2)   | C6B—H6B | 0.9500     |
| O3B—C3A | 1.242 (6)  | C6C—C6D | 1.372 (10) |
| O3A—C3A | 1.239 (6)  | С6С—Н6С | 0.9500     |
| C3A—C3B | 1.533 (8)  | C6D—H6D | 0.9500     |
| F3B—C3B | 1.306 (7)  | N7—C7A  | 1.339 (7)  |
| F3A—C3B | 1.320 (9)  | N7—C7E  | 1.354 (7)  |
| C3B—F3C | 1.303 (9)  | C7A—C7B | 1.377 (8)  |
| N4—C4A  | 1.335 (7)  | C7A—H7A | 0.9500     |
| N4—C4E  | 1.337 (7)  | C7E—C7D | 1.371 (9)  |
| O8A—C8A | 1.239 (6)  | C7E—H7E | 0.9500     |
| O8B—C8A | 1.243 (7)  | C7D—C7C | 1.355 (11) |
| C8A—C8B | 1.529 (9)  | C7D—H7D | 0.9500     |
| C8B—F8E | 1.226 (12) | C7B—C7C | 1.386 (12) |

| C8B—F8A                                                                         | 1.287 (11)              | C7B—H7B                                                    | 0.9500               |
|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|----------------------|
| C8B—F8B                                                                         | 1.293 (10)              | C7C—H7C                                                    | 0.9500               |
| C8B—F8F                                                                         | 1.315 (13)              |                                                            |                      |
|                                                                                 |                         |                                                            |                      |
| Co1—OW—Co2                                                                      | 116.86 (15)             | O8B—C8A—C8B                                                | 115.5 (5)            |
| Co1—OW—H1                                                                       | 98 (3)                  | F8E—C8B—F8A                                                | 122.6 (10)           |
| Co2—OW—H1                                                                       | 117 (3)                 | F8E—C8B—F8B                                                | 41.0 (7)             |
| Co1—OW—H2                                                                       | 116 (3)                 | F8A                                                        | 114.4 (8)            |
| Co2—OW—H2                                                                       | 102 (3)                 | F8E—C8B—F8F                                                | 115.8 (11)           |
| H1—OW—H2                                                                        | 107 (5)                 | F8A—C8B—F8F                                                | 24.5 (7)             |
| O2A—Co1—O8A                                                                     | 179.02 (16)             | F8B—C8B—F8F                                                | 127.1 (10)           |
| O2A—Co1—O3B                                                                     | 93.75 (17)              | F8E—C8B—F8D                                                | 93.7 (10)            |
| O8A—Co1—O3B                                                                     | 87.23 (17)              | F8A—C8B—F8D                                                | 79.2 (8)             |
| O2A—Co1—N6                                                                      | 88.85 (15)              | F8B—C8B—F8D                                                | 53.6 (7)             |
| O8A—Co1—N6                                                                      | 91.20 (15)              | F8F—C8B—F8D                                                | 103.2 (10)           |
| O3B—Co1—N6                                                                      | 87.56 (16)              | F8E—C8B—F8C                                                | 53.6 (8)             |
| O2A—Co1—N4                                                                      | 89.42 (17)              | F8A—C8B—F8C                                                | 106.4 (8)            |
| O8A—Co1—N4                                                                      | 89.59 (17)              | F8B—C8B—F8C                                                | 94.6 (7)             |
| O3B—Co1—N4                                                                      | 176.51 (17)             | F8F—C8B—F8C                                                | 83.9 (9)             |
| N6—Co1—N4                                                                       | 91.05 (17)              | F8D—C8B—F8C                                                | 145.1 (8)            |
| O2A—Co1—OW                                                                      | 89.35 (14)              | F8E—C8B—C8A                                                | 120.7 (8)            |
| O8A—Co1—OW                                                                      | 90.66 (13)              | F8A—C8B—C8A                                                | 116.5 (7)            |
| O3B—Co1—OW                                                                      | 89.57 (14)              | F8B-C8B-C8A                                                | 115.6 (7)            |
| N6—Co1—OW                                                                       | 176.51 (14)             | F8F—C8B—C8A                                                | 115.5 (8)            |
| N4—Co1—OW                                                                       | 91.92 (15)              | F8D—C8B—C8A                                                | 101.7 (8)            |
| C1A - O1A - Co2                                                                 | 128.6 (3)               | F8C—C8B—C8A                                                | 105.8 (6)            |
| O1B-C1A-O1A                                                                     | 129.4 (5)               | N4—C4A—C4B                                                 | 122.8 (6)            |
| O1B-C1A-C1B                                                                     | 115.8 (5)               | N4—C4A—H4A                                                 | 118.6                |
| O1A - C1A - C1B                                                                 | 114 8 (5)               | C4B-C4A-H4A                                                | 118.6                |
| F1C—C1B—F1A                                                                     | 1180(8)                 | C4C-C4B-C4A                                                | 118.7 (6)            |
| F1C - C1B - F1B                                                                 | 93 7 (9)                | C4C-C4B-H4B                                                | 120.7                |
| F1A - C1B - F1B                                                                 | 99.2 (8)                | C4A - C4B - H4B                                            | 120.7                |
| F1C-C1B-C1A                                                                     | 1165(7)                 | N4—C4E—C4D                                                 | 120.7                |
| F1A - C1B - C1A                                                                 | 116.3 (6)               | N4—C4F—H4F                                                 | 118.6                |
| F1B— $C1B$ — $C1A$                                                              | 107.6 (8)               | C4D - C4E - H4E                                            | 118.6                |
| $03A - Co^2 - 01A$                                                              | 178 90 (16)             | C4B - C4C - C4D                                            | 119.4 (6)            |
| $O_3A - C_0^2 - O_2^2B$                                                         | 92 81 (17)              | C4B - C4C - H4C                                            | 120.3                |
| $01A - C_0 2 - 02B$                                                             | 88 01 (17)              | C4D-C4C-H4C                                                | 120.3                |
| $O_{3}A - C_{0}2 - N_{5}$                                                       | 89.26 (16)              | C4E - C4D - C4C                                            | 120.3<br>118.7(7)    |
| $O_{1A} = C_{02} = N_5$                                                         | 01.51 (15)              | $C_{4}E_{-}C_{4}D_{-}H_{4}D_{-}$                           | 120.6                |
| $O^2 B$ $C_0^2 N^5$                                                             | 87.48 (16)              | $C_{4}C_{4}C_{4}C_{4}D_{4}D_{4}D_{4}D_{4}D_{4}D_{4}D_{4}D$ | 120.0                |
| $O_2 A = C_0 C_0 N_7$                                                           | 80.36 (17)              | $C_{+}C_{-}C_{+}D_{-}H_{+}D$                               | 120.0<br>116.0(5)    |
| $O_{1A} = C_{02} = N_7$                                                         | 89.30 (17)              | C5E N5 Co2                                                 | 110.9(3)<br>121.3(4) |
| $O_{1A} = C_{02} = N_7$                                                         | 176.81(16)              | $C_{2} = N_{2} = C_{2}$                                    | 121.3(4)<br>121.0(4) |
| $N_{2} = C_{02} = N_{7}$                                                        | 170.01(10)<br>00.22(17) | N5 C5A C5B                                                 | 121.9(4)<br>123.5(5) |
| $\begin{array}{c} 13 - 02 - 17 \\ 03 \\ 03 \\ 02 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00$ | 90.22(17)<br>80.27(14)  | N5 C5A H5A                                                 | 118 3                |
| O1A Co2 OW                                                                      | 80.00(14)               | C5B C5A U5A                                                | 118.2                |
| $O_{1A} = C_{02} = O_{W}$                                                       | 09.77(14)               | $CJD - CJA - \Pi JA$                                       | 110.3                |
| 02D - 002 - 0W                                                                  | 90.34 (14)              | INJ-CJE-CJD                                                | 123.1 (3)            |

| N5—Co2—OW   | 177.47 (14) | N5—C5E—H5E  | 118.4     |
|-------------|-------------|-------------|-----------|
| N7—Co2—OW   | 91.82 (15)  | C5D—C5E—H5E | 118.4     |
| C2A—O2A—Co1 | 132.4 (3)   | C5A—C5B—C5C | 118.4 (6) |
| C2A—O2B—Co2 | 136.1 (4)   | C5A—C5B—H5B | 120.8     |
| O2A—C2A—O2B | 130.9 (5)   | C5C—C5B—H5B | 120.8     |
| O2A—C2A—C2B | 114.1 (4)   | C5DC5CC5B   | 118.5 (6) |
| O2B—C2A—C2B | 115.0 (4)   | C5D—C5C—H5C | 121.8     |
| F2E—C2B—F2A | 122.0 (9)   | C5B—C5C—H5C | 119.7     |
| F2E—C2B—F2F | 122.6 (11)  | C5C—C5D—C5E | 119.6 (6) |
| F2A—C2B—F2F | 32.1 (7)    | C5C—C5D—H5D | 120.2     |
| F2E—C2B—F2B | 30.8 (7)    | C5E—C5D—H5D | 120.2     |
| F2A—C2B—F2B | 111.0 (7)   | C6E—N6—C6A  | 117.8 (5) |
| F2F—C2B—F2B | 130.4 (9)   | C6E—N6—Co1  | 121.0 (3) |
| F2E—C2B—F2C | 73.1 (9)    | C6A—N6—Co1  | 121.1 (4) |
| F2A—C2B—F2C | 104.6 (7)   | N6—C6A—C6B  | 122.7 (5) |
| F2F—C2B—F2C | 74.8 (9)    | N6—C6A—H6A  | 118.6     |
| F2B—C2B—F2C | 103.7 (6)   | С6В—С6А—Н6А | 118.6     |
| F2E—C2B—F2D | 101.6 (11)  | N6—C6E—C6D  | 122.9 (5) |
| F2A—C2B—F2D | 46.2 (7)    | N6—C6E—H6E  | 118.6     |
| F2F—C2B—F2D | 78.2 (10)   | C6D—C6E—H6E | 118.6     |
| F2B—C2B—F2D | 75.4 (8)    | C6C—C6B—C6A | 118.7 (6) |
| F2C—C2B—F2D | 142.9 (9)   | C6C—C6B—H6B | 120.6     |
| F2E—C2B—C2A | 119.8 (9)   | C6A—C6B—H6B | 120.6     |
| F2A—C2B—C2A | 115.9 (6)   | C6B—C6C—C6D | 119.5 (6) |
| F2F—C2B—C2A | 114.7 (8)   | C6B—C6C—H6C | 120.2     |
| F2B—C2B—C2A | 112.8 (6)   | C6D—C6C—H6C | 120.2     |
| F2C—C2B—C2A | 107.7 (5)   | C6C—C6D—C6E | 118.3 (6) |
| F2D—C2B—C2A | 106.5 (8)   | C6C—C6D—H6D | 120.9     |
| C2B—F2D—F2F | 49.5 (7)    | C6E—C6D—H6D | 120.9     |
| C2B—F2F—F2D | 52.3 (7)    | C7A—N7—C7E  | 117.6 (5) |
| C3A—O3B—Co1 | 136.5 (3)   | C7A—N7—Co2  | 123.1 (4) |
| C3A—O3A—Co2 | 131.9 (3)   | C7E—N7—Co2  | 119.1 (4) |
| O3A—C3A—O3B | 131.1 (5)   | N7—C7A—C7B  | 122.8 (6) |
| O3A—C3A—C3B | 114.6 (5)   | N7—C7A—H7A  | 118.6     |
| O3B—C3A—C3B | 114.3 (4)   | С7В—С7А—Н7А | 118.6     |
| F3C—C3B—F3B | 109.6 (7)   | N7—C7E—C7D  | 122.1 (6) |
| F3C—C3B—F3A | 103.9 (7)   | N7—C7E—H7E  | 118.9     |
| F3B—C3B—F3A | 105.8 (7)   | C7D—C7E—H7E | 118.9     |
| F3C—C3B—C3A | 111.5 (6)   | C7C—C7D—C7E | 119.7 (7) |
| F3B—C3B—C3A | 114.2 (5)   | C7C—C7D—H7D | 120.1     |
| F3A—C3B—C3A | 111.3 (6)   | C7E—C7D—H7D | 120.1     |
| C4A—N4—C4E  | 117.6 (5)   | C7A—C7B—C7C | 118.4 (7) |
| C4A—N4—Co1  | 119.4 (4)   | С7А—С7В—Н7В | 120.8     |
| C4E—N4—Co1  | 122.7 (4)   | С7С—С7В—Н7В | 120.8     |
| C8A—O8A—Co1 | 128.1 (3)   | C7D—C7C—C7B | 119.3 (6) |
| 08A—C8A—08B | 129.6 (5)   | C7D—C7C—H7C | 120.4     |
| O8A—C8A—C8B | 114.9 (5)   | С7В—С7С—Н7С | 120.4     |

| Co2—OW—Co1—O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -51.18(18)             | O8A—Co1—N4—C4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.2 (5)             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Co2—OW—Co1—O8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129.80 (18)            | N6—Co1—N4—C4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133.4 (5)            |
| Co2—OW—Co1—O3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.57 (19)             | OW—Co1—N4—C4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -48.4(5)             |
| Co2—OW—Co1—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -140.58(19)            | O3B—Co1—O8A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.9 (5)             |
| $C_02$ — $O1A$ — $C1A$ — $O1B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.0(9)                | N6—Co1—O8A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.4 (5)            |
| $C_0^2 - O_1^2 - C_1^2 - C_1^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1771(5)                | N4—Co1—O8A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -92.5(5)             |
| O1B— $C1A$ — $C1B$ — $F1C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142.9(10)              | OW—Co1—O8A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.6(5)              |
| O1A - C1A - C1B - F1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -363(13)               | $C_01 - 08A - C8A - 08B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5(9)               |
| O1B-C1A-C1B-F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -35(12)                | $C_01 = 08A = C8A = C8B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1794(4)             |
| O1A - C1A - C1B - F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1774(8)                | O8A - C8A - C8B - F8F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175.1(1)<br>13.5(13) |
| OIR CIA CIB FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1135(8)               | $\begin{array}{c} 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.$ | -1665(11)            |
| OID - CIA - CIB - FIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.3 (0)               | OSD - CSA - CSD - FSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -171.7(8)            |
| $C_{1A} = C_{1A} = C_{1B} = C_{1B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07.3(9)                | OSA - CSA - CSD - FSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{1.7}(0)$   |
| C1A = O1A = Co2 = O2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.7(3)                | $O_{0} O_{0} O_{0$                                                                                                                                                                                                                                                                                                                | 0.3(11)              |
| $CIA = OIA = C_{12} = N_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1/9.9(3)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -33.0(10)            |
| CIA = OIA = Co2 = N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -89.7 (5)              | O8B - C8A - C8B - F8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14/.1 (8)            |
| CIA = OIA = Co2 = OW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1 (5)                | U8A—U8A—U8B—F8F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161.0 (9)            |
| Col-OW-Co2-O3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -52.61 (18)            | O8B—C8A—C8B—F8F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -18.9 (12)           |
| Col—OW—Co2—OlA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128.20 (18)            | 08A—C8A—C8B—F8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -88.0 (8)            |
| Co1—OW—Co2—O2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.19 (19)             | O8B—C8A—C8B—F8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.0 (8)             |
| Co1—OW—Co2—N7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -141.95 (19)           | O8A—C8A—C8B—F8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.2 (7)             |
| O3B—Co1—O2A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -49.6 (5)              | O8B—C8A—C8B—F8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -109.7 (6)           |
| N6—Co1—O2A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -137.0 (5)             | C4E—N4—C4A—C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.3 (9)             |
| N4—Co1—O2A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 131.9 (5)              | Co1—N4—C4A—C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171.8 (5)            |
| OW—Co1—O2A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.0 (5)               | N4—C4A—C4B—C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2 (11)             |
| O3A—Co2—O2B—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.3 (6)               | C4A—N4—C4E—C4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 (9)              |
| O1A—Co2—O2B—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -93.9 (6)              | Co1—N4—C4E—C4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -172.4 (5)           |
| N5—Co2—O2B—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174.5 (6)              | C4A—C4B—C4C—C4D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7 (11)             |
| OW—Co2—O2B—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.0 (6)               | N4—C4E—C4D—C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4 (11)             |
| Co1—O2A—C2A—O2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -9.2 (9)               | C4B—C4C—C4D—C4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.5 (12)            |
| Co1—O2A—C2A—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 171.3 (4)              | O3A—Co2—N5—C5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -145.3 (4)           |
| Co2—O2B—C2A—O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -15.6 (10)             | O1A—Co2—N5—C5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.9 (4)             |
| Co2—O2B—C2A—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 163.9 (5)              | O2B—Co2—N5—C5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.9 (4)            |
| O2A—C2A—C2B—F2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -173.1 (11)            | N7—Co2—N5—C5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -55.9 (4)            |
| O2B—C2A—C2B—F2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.3 (13)               | O3A—Co2—N5—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.7 (5)             |
| O2A—C2A—C2B—F2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -10.0(9)               | O1A - Co2 - N5 - C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -147.1(5)            |
| O2B— $C2A$ — $C2B$ — $F2A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170.5 (7)              | O2B— $Co2$ — $N5$ — $C5A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -59.1(5)             |
| O2A - C2A - C2B - F2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.6(12)               | $N7 - Co^2 - N5 - C5A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123 1 (5)            |
| O2B-C2A-C2B-F2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1540(10)              | C5E = N5 = C5A = C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24(9)                |
| O2A = C2A = C2B = F2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -139.5(6)              | $C_0^2$ N5 $C_5^A$ $C_5^B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1767(5)             |
| $\begin{array}{c} 02B \\ \hline 02B \\ 02B \\ \hline 0$ | 40.9 (8)               | C5A = N5 = C5F = C5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.8(9)              |
| $O_{2D} = O_{2A} = O_{2D} = O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1067(6)                | $C_{02}$ N5 $C_{5E}$ $C_{5D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178.2(5)             |
| $\begin{array}{c} 02R \\ 02B \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -72.9(7)               | $N_{5} C_{5} C_{5$                                                                                                                                                                                                                                                                                                                | -23(11)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -588(0)                | $C_{5A} = C_{5B} = C_{5C} = C_{5D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3(11)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -30.0 (9)<br>121 6 (9) | $C_{2}A - C_{2}D - C$                                                                                                                                                                                                                                                                                                                | 0.0(11)              |
| 02D - 02A - 02D - F2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.0(0)               | $C_{2}D - C_{2}C_{2}D - C_{2}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0(11)              |
| F2C - C2D - F2D - F2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -121.2(12)             | NJ - UJE - UJU -                                                                                                                                                                                                                                                                                                                  | -0.7(11)             |
| $r_2A - C_2B - r_2D - r_2r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3 (11)               | O2A - O1 - NO - OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.2(3)<br>142.0(5)  |
| $F_2B - C_2B - F_2D - F_2F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -13/.6 (9)             | U8A - C01 - N6 - C6E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -143.8 (5)           |
| F2C—C2B—F2D—F2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -44.0 (14)             | O3B—Co1—N6—C6E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -56.6 (5)            |

| C2A—C2B—F2D—F2F | 112.6 (9)  | N4—Co1—N6—C6E   | 126.6 (5)  |
|-----------------|------------|-----------------|------------|
| F2E—C2B—F2F—F2D | 96.4 (14)  | O2A—Co1—N6—C6A  | -139.6 (4) |
| F2A—C2B—F2F—F2D | -3.1 (15)  | O8A—Co1—N6—C6A  | 39.4 (4)   |
| F2B—C2B—F2F—F2D | 59.0 (13)  | O3B—Co1—N6—C6A  | 126.6 (4)  |
| F2C—C2B—F2F—F2D | 154.3 (9)  | N4—Co1—N6—C6A   | -50.2 (4)  |
| C2A—C2B—F2F—F2D | -102.9 (9) | C6E—N6—C6A—C6B  | -0.8 (9)   |
| O2A—Co1—O3B—C3A | 83.4 (6)   | Co1—N6—C6A—C6B  | 176.1 (5)  |
| O8A—Co1—O3B—C3A | -96.5 (6)  | C6A—N6—C6E—C6D  | 2.4 (10)   |
| N6—Co1—O3B—C3A  | 172.1 (6)  | Co1—N6—C6E—C6D  | -174.5 (6) |
| OW—Co1—O3B—C3A  | -5.9 (6)   | N6—C6A—C6B—C6C  | -1.4 (10)  |
| O2B—Co2—O3A—C3A | -53.4 (5)  | C6A—C6B—C6C—C6D | 2.0 (11)   |
| N5—Co2—O3A—C3A  | -140.9 (5) | C6B—C6C—C6D—C6E | -0.4 (12)  |
| N7—Co2—O3A—C3A  | 128.9 (5)  | N6—C6E—C6D—C6C  | -1.9 (12)  |
| OW—Co2—O3A—C3A  | 37.1 (5)   | O3A—Co2—N7—C7A  | -136.1 (5) |
| Co2—O3A—C3A—O3B | -4.9 (9)   | O1A—Co2—N7—C7A  | 43.2 (5)   |
| Co2—O3A—C3A—C3B | 176.5 (4)  | N5—Co2—N7—C7A   | 134.7 (5)  |
| Co1—O3B—C3A—O3A | -16.9 (10) | OW—Co2—N7—C7A   | -46.8 (5)  |
| Co1—O3B—C3A—C3B | 161.7 (5)  | O3A—Co2—N7—C7E  | 48.8 (4)   |
| O3A—C3A—C3B—F3C | -128.4 (7) | O1A—Co2—N7—C7E  | -132.0 (4) |
| O3B—C3A—C3B—F3C | 52.7 (8)   | N5—Co2—N7—C7E   | -40.5 (4)  |
| O3A—C3A—C3B—F3B | -3.6 (9)   | OW—Co2—N7—C7E   | 138.1 (4)  |
| O3B—C3A—C3B—F3B | 177.6 (6)  | C7E—N7—C7A—C7B  | 1.8 (9)    |
| O3A—C3A—C3B—F3A | 116.1 (6)  | Co2—N7—C7A—C7B  | -173.4 (5) |
| O3B—C3A—C3B—F3A | -62.8 (8)  | C7A—N7—C7E—C7D  | -2.0 (9)   |
| O2A—Co1—N4—C4A  | 48.5 (4)   | Co2—N7—C7E—C7D  | 173.4 (5)  |
| O8A—Co1—N4—C4A  | -131.5 (4) | N7—C7E—C7D—C7C  | 0.7 (11)   |
| N6—Co1—N4—C4A   | -40.3 (4)  | N7—C7A—C7B—C7C  | -0.2 (11)  |
| OW—Co1—N4—C4A   | 137.8 (4)  | C7E—C7D—C7C—C7B | 1.0 (12)   |
| O2A—Co1—N4—C4E  | -137.7 (5) | C7A—C7B—C7C—C7D | -1.2 (12)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H      | H···A    | D····A    | D—H···A |
|------------------------------|----------|----------|-----------|---------|
| O <i>W</i> —H1···O8 <i>B</i> | 0.96 (5) | 1.67 (5) | 2.616 (5) | 165 (5) |
| O <i>₩</i> —H2…O1 <i>B</i>   | 0.96 (5) | 1.68 (5) | 2.610 (5) | 161 (4) |