metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. E. Duff,^a P. B. Hitchcock,^b S. C. Davies,^a J. E. Barclay^a and D. J. Evans^a*

^aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England, and ^bDepartment of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, England

Correspondence e-mail: dave.evans@bbsrc.ac.uk

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.009 Å H-atom completeness 93% R factor = 0.052 wR factor = 0.107 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

1,3-Bis(diphenylphosphino)propane- $2\kappa^2 P$,P'dicarbonyl- $1\kappa^2 C$ -chloro- $2\kappa Cl$ -{ μ -2,2',2"-nitrilotriethanethiolato(3–)- $1\kappa^4 N$,S,S',S": $2\kappa^2 S$,S'}iron(II)nickel(II) acetonitrile solvate

The structure of the neutral title complex, [{Fe-[(SCH₂CH₂)₃N](CO)₂-*S*,*S*'}NiCl{[P(C₆H₅)₂]₂(CH₂)₃]·CH₃CN or [FeNi(C₆H₁₂NS₃)Cl(C₂₇H₂₆P₂)(CO)₂]·C₂H₃N, is described. There are two independent complex molecules and two solvent molecules in the asymmetric unit. The Fe atoms are octahedrally coordinated; the three S atoms and a C atom of one of the two CO ligands form the equatorial plane, with the N atom of the (SCH₂CH₂)₃N ligand and the second carbonyl C atom lying in the axial positions. The Ni atoms are square pyramidally coordinated, with the two bridging S atoms and the P atoms of the 1,3-bis(diphenylphosphino)propane ligand forming the basal plane and the Cl atom lying in the apical position.

Comment

The title compound, (I), was prepared as a further example of a synthetic structural analogue of the dimetallic active site of the enzyme nickel–iron hydrogenase (Evans & Pickett, 2003; Davies *et al.*, 1999; Smith *et al.*, 2002, 2003). Compound (I) is closely related to [{Fe[(SCH₂CH₂)₃N](CO)₂-*S*,*S'*}NiCl-{[P(C₆H₅)₂]₂(CH₂)₂}], (II) (Davies *et al.*, 1999; Smith *et al.*, 2002), in which the chelating diphosphane is 1,2-bis(diphenylphosphino)ethane (dppe), whereas in (I) it is 1,3-bis-(diphenylphosphino)propane (dppp).

The asymmetric unit consists of two complex molecules and two solvent molecules. The S_3C equatorial planes of the octahedrally coordinated Fe atoms are slightly distorted, with deviations from the mean planes lying in the range -0.069 (3) to 0.074 (3) Å in molecule 1 (the negative sign indicates the opposite side of the mean plane) and -0.060 (3) to 0.063 (3) Å in molecule 2. The Fe atoms are displaced from these mean equatorial planes by 0.067 (2) and 0.1400 (12) Å, respectively, towards the axial CO ligand. The S_2P_2 basal planes of the square pyramidally coordinated Ni atoms are also slightly distorted, with deviations from the mean planes lying in the range -0.054 (3) to 0.053 (3) Å in molecule 1 and -0.035 (3) to 0.035 (3) Å in molecule 2. The Ni atoms are displaced 0.3227 (13) and 0.3175 (14) Å, respectively, from these mean Received 20 May 2005 Accepted 7 June 2005 Online 17 June 2005

Figure 1

The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. H atoms have been omitted.

planes, towards the Cl atoms. The S_3C and S_2P_2 mean planes are not coplanar, with an angle between their normals of 16.31 (6)°; in (II), this angle is 19.38 (7)°.

Bond dimensions about the Fe and Ni atoms are not unusual and are comparable to those in (II) [see Table 1 for dimensions in (I)]. The Fe–C bond to the equatorial CO ligand is slightly longer than those to the axial CO ligand in both molecules of (I) and in complex (II); in the second molecule of (I) it is longer than in the first and in (II) as a result of unresolved disorder in the O atom [Fe–C_{eq} = 1.783 (12) Å and Fe–C_{axial} = 1.741 (10) in (II)].

Figure 2

View along the N-Fe-C-O axis of (a) molecule 1 and (b) molecule 2, showing the deviation from the pseudo-threefold rotation of the $(SCH_2CH_2)_3N$ ligand. H atoms have been omitted.

The unusual torsion angles in the $(SCH_2CH_2)_3N$ ligand in (I) are also found in (II); the usual pseudo-threefold rotation about the Fe-N bond is removed by the non-bridging SCH_2CH_2 'arm' in both structures (see Fig. 2). Other bond dimensions in the ligands are as expected.

The molecules are arranged within the crystal structure with the complex molecules forming chains parallel to the crystallographic a axis; the solvent molecules occupy the centres of the channels enclosed by four such chains (see Fig. 3).

Experimental

24708 measured reflections

10246 independent reflections

Under an atmosphere of carbon monoxide, a mixture of $[NiCl_2(dppp)]$ (0.21 g, 0.39 mmol) and $(NEt_4)[Fe\{(SCH_2CH_2)_3N\}-(CO)]$ (0.16 g, 0.39 mmol) in MeCN (100 ml) was refluxed with stirring for 2.5 h. After cooling overnight, crystals were collected by filtration and dried (0.31 g, 97%). Analysis expected for $C_{37}H_{41}CIFeN_2NiO_2P_2S_3$: C 52.1, H 4.8, N 3.3%; found C 51.7, H 4.9, N 3.2%. ν (CO), KBr: 1944 and 2006 cm⁻¹; Mössbauer (solid, 80 K, relative to iron foil at 298 K) isomer shift 0.07 mm s⁻¹, quadrupole splitting 0.56 mm s⁻¹.

Crystal data	
$[FeNi(C_6H_{12}NS_3)Cl(C_{27}H_{26}P_2)-$	$D_x = 1.485 \text{ Mg m}^{-3}$
$(CO)_2$]·C ₂ H ₃ N	Mo $K\alpha$ radiation
$M_r = 853.85$	Cell parameters from 24708
Orthorhombic, Pca2 ₁	reflections
a = 20.6025 (4) Å	$\theta = 3.7-23.8^{\circ}$
b = 12.4769 (2) Å	$\mu = 1.23 \text{ mm}^{-1}$
c = 29.7090 (6) Å	T = 173 (2) K
V = 7636.9 (2) Å ³	Plate, brown
Z = 8	$0.2 \times 0.2 \times 0.02 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	8837 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.052$
Absorption correction: multi-scan	$\theta_{\rm max} = 23.7^{\circ}$
(Blessing, 1995)	$h = -22 \rightarrow 22$
$T_{min} = 0.823, T_{max} = 0.979$	$k = -14 \rightarrow 13$

 $l = -27 \rightarrow 33$

metal-organic papers

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.107$ S = 1.0710246 reflections 884 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + 30.7123P] + 30.7123P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{max} = 0.006 \Delta\rho_{max} = 0.88 \text{ e} \text{ Å}^{-3} \Delta\rho_{min} = -0.63 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 4317 Friedel pairs Flack parameter: 0.604 (14)

lable l			
Selected	geometric parameters	(Å,	°).

Ni-P1	2.2012 (14)	Ni1b - P1b	2.2018 (15)
Ni-P2	2.2060 (15)	Ni1b - P2b	2.2046 (15)
Ni-S3	2.2517 (13)	Ni1b - S1b	2.2495 (16)
Ni-S1	2.2574 (15)	Ni1b - S3b	2.2536 (14)
Ni-Cl	2.5787 (14)	Ni1b - Cl1b	2.5971 (16)
Fe-C35	1.759 (6)	Fe2b-C35b	1.760 (6)
Fe-C34	1.829 (6)	Fe2b-C34b	1.912 (7)
Fe-N	2.048 (4)	Fe2b-N1b	2.065 (5)
Fe-S1	2,2865 (15)	Fe2b-S2b	2,2839 (19)
Fe-S?	2 2978 (16)	$Fe^{2b} = S1b$	2 2909 (16)
Fe-S3	2 3159 (15)	Fe2b = S3b	2.2909(10) 2 3029(15)
01 - C34	1.065(7)	$\Omega_{1b} - \Omega_{34b}$	0.861(8)
$0^{2}-0^{35}$	1.005(7) 1.151(7)	$\Omega^{2b} - \Omega^{35b}$	1137(7)
02-035	1.151 (7)	020-0350	1.157 (7)
	(-)		
P1-Ni-P2	92.88 (5)	O2-C35-Fe	176.9 (5)
P1-Ni-S3	165.43 (6)	P1b-Ni1b-P2b	92.84 (6)
P2-Ni-S3	88.90 (5)	P1b-Ni1b-S1b	87.92 (6)
P1-Ni-S1	87.87 (5)	P2b-Ni1b-S1b	161.55 (6)
P2-Ni-S1	160.38 (6)	P1b-Ni1b-S3b	164.85 (6)
S3-Ni-S1	85.67 (5)	P2b-Ni1b-S3b	88.78 (5)
P1-Ni-Cl	88.51 (5)	\$1 <i>b</i> -Ni1 <i>b</i> -\$3 <i>b</i>	85.85 (5)
P2-Ni-Cl	92.94 (5)	P1b-Ni1b-Cl1b	88.79 (5)
S3-Ni-Cl	105.85 (5)	P2b-Ni1b-Cl1b	92.29 (5)
S1-Ni-Cl	106.68 (5)	S1b-Ni1b-Cl1b	106.16 (6)
C35-Fe-C34	91.6 (2)	S3b-Ni1b-Cl1b	106.21 (5)
C35-Fe-N	175.2 (2)	C35b-Fe2b-C34b	90.1 (3)
C34-Fe-N	92.5 (2)	C35b-Fe2b-N1b	177.9 (2)
C35-Fe-S1	95.72 (19)	C34 <i>b</i> -Fe2 <i>b</i> -N1 <i>b</i>	91.8 (2)
C34-Fe-S1	96.10 (18)	C35b - Fe2b - S2b	94.41 (19)
N-Fe-S1	86.26 (12)	C34b - Fe2b - S2b	87.86 (18)
C35-Fe-S2	90.91 (19)	N1b - Fe2b - S2b	86.57 (13)
C34–Fe–S2	87.63 (18)	C35b - Fe2b - S1b	92.44 (18)
N-Fe-S2	86.83 (12)	C34b - Fe2b - S1b	95.97 (18)
S1 - Fe - S2	172.29 (7)	N1b - Fe2b - S1b	86.47 (13)
C35-Fe-S3	88 34 (18)	S2b - Fe2b - S1b	172.15 (7)
C34-Fe-S3	179.60 (19)	C35b - Fe2b - S3b	90.78 (19)
N = Fe = S3	87 58 (12)	$C34b = Fe^2b = S3b$	1791(2)
S1 - Fe - S3	83 53 (5)	$N1b = Fe^2b = S3b$	87 29 (13)
$S_{2} = F_{e} = S_{3}$	92 76 (6)	S2h = Fe2h = S3h	92 30 (6)
Ni_S1_Fe	95 51 (6)	S1b = Fe2b = S3b	83 76 (5)
$\Omega_{1} = G_{34} = F_{e}$	175 3 (5)	$Ni1B = S1B = Fe^{2B}$	95.18 (6)
01-054-10	175.5 (5)	10110-510-1020	<i>y</i> 5.10 (0)
Fe-S1-C29-C28	-9.4 (6)	C29b-C28b-N1b-Fe2b	-43.0(10)
S1-C29-C28-N	38.6 (8)	Fe2b-S2b-C31b-C30b	25.8 (8)
C29-C28-N-Fe	-51.9 (7)	S2b-C31b-C30b-N1b	-54.9(10)
Fe-S2-C31-C30	23.7 (6)	C31b-C30b-N1b-Fe2b	58.7 (9)
S2-C31-C30-N	-51.7 (8)	Fe2b-S3b-C33b-C32b	-35.8(7)
C31-C30-N-Fe	55.3 (7)	S3b-C33b-C32b-N1b	42.1 (10)
Fe-S3-C33-C32	-38.3 (6)	C33b-C32b-N1b-Fe2b	-24.5 (10)
S3-C33-C32-N	45.8 (8)	P1-C1-C2-C3	-68.5(8)
C33-C32-N-Fe	-27.3 (8)	C1-C2-C3-P2	69.7 (8)
$\mathrm{Fe}2b\!-\!\mathrm{S}1b\!-\!\mathrm{C}29b\!-\!\mathrm{C}28b$	-3.0 (8)	P1b-C1b-C2b-C3b	-69.3 (8)
S1b - C29b - C28b - N1b	29.6 (12)	C1b-C2b-C3b-P2b	67.1 (8)

H atoms were not located for the CH₃CN solvent molecules. The value of the Flack (1983) parameter indicates an inversion twin. All other H atoms were positioned geometrically (C-H = 0.95–0.99 Å) and refined as riding $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figure 3

The packing, viewed along the crystallographic a axis. Atoms are represented by arbitrary spheres. H atoms have been omitted.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Biotechnology and Biological Sciences Research Council and the John Innes Foundation (SED) for financial support.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Davies, S. C., Evans, D. J., Hughes, D. L., Longhurst, S. & Sanders, J. R. (1999). *Chem. Commun.* pp. 1935–1936.
- Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Smith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641–2647.
- Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147–4151.

Acta Cryst. (2005). E61, m1316–m1319 [https://doi.org/10.1107/S1600536805018088] 1,3-Bis(diphenylphosphino)propane- $2\kappa^2 P$, P'-dicarbonyl- $1\kappa^2 C$ -chloro- $2\kappa Cl$ -{ μ -2,2',2''-nitrilotriethanethiol-

ato(3–)-1 κ^4 N,S,S',S'':2 κ^2 S,S'}iron(II)nickel(II) acetonitrile solvate

S. E. Duff, P. B. Hitchcock, S. C. Davies, J. E. Barclay and D. J. Evans

(I)

Crystal data

 $[Fe(C_6H_{12}NS_3)(CO)_2NiCl(C_{27}H_{26}P_2)] \cdot C_2H_3N$ $M_r = 853.85$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 20.6025 (4) Å b = 12.4769 (2) Å c = 29.7090 (6) Å V = 7636.9 (2) Å³ Z = 8

Data collection

Nonius KappaCCD diffractometer Radiation source: Enraf–Nonius FR590 Graphite monochromator Detector resolution: 9 pixels mm⁻¹ φ or ω ? scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.823, T_{\max} = 0.979$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.107$ S = 1.0710246 reflections 884 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 3536 $D_x = 1.485 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 117428 reflections $\theta = 3.7-23.8^{\circ}$ $\mu = 1.23 \text{ mm}^{-1}$ T = 173 KPlate, brown $0.2 \times 0.2 \times 0.02 \text{ mm}$

24708 measured reflections 10246 independent reflections 8837 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 23.7^{\circ}, \theta_{min} = 3.8^{\circ}$ $h = -22 \rightarrow 22$ $k = -14 \rightarrow 13$ $l = -27 \rightarrow 33$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 30.7123P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.006$ $\Delta\rho_{max} = 0.88 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.63 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 4317 Friedel pairs? Absolute structure parameter: 0.604 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H atoms were omitted for the CH3CN solvate molecules.

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	12	7	17. */17	
	л 0.21500 (2)	<u>у</u> 0.45222 (5)	2 0.00044.(2)	O_{1SO} / O_{eq}	
N1	0.31580 (3)	0.45332 (5)	-0.09044 (2)	0.01991 (16)	
Fe	0.31008 (4)	0.67952 (5)	-0.15192 (2)	0.02202 (19)	
Cl	0.38331 (6)	0.46280 (10)	-0.01746 (4)	0.0283 (3)	
S1	0.37554 (7)	0.53252 (10)	-0.14477 (5)	0.0261 (4)	
S2	0.24863 (7)	0.83311 (11)	-0.14947 (6)	0.0371 (4)	
S3	0.25547 (6)	0.60378 (9)	-0.09167 (5)	0.0222 (3)	
P1	0.36558 (6)	0.30219 (10)	-0.10683(5)	0.0213 (3)	
P2	0.23460 (7)	0.37016 (10)	-0.05694 (5)	0.0206 (3)	
01	0.3765 (2)	0.7682 (4)	-0.22910 (16)	0.0607 (15)	
02	0.2146 (2)	0.5822 (4)	-0.21136 (14)	0.0522 (13)	
Ν	0.3700 (2)	0.7517 (3)	-0.10603 (14)	0.0237 (12)	
C1	0.3604 (3)	0.1952 (4)	-0.06428 (18)	0.0283 (15)	
H1A	0.383	0.131	-0.0759	0.034*	
H1B	0.3837	0.219	-0.0369	0.034*	
C2	0.2923 (2)	0.1643 (4)	-0.05141 (18)	0.0221 (13)	
H2A	0.2939	0.0985	-0.0328	0.027*	
H2B	0.2676	0.1475	-0.0791	0.027*	
C3	0.2562 (3)	0.2519 (4)	-0.02522 (18)	0.0247 (14)	
H3A	0.2837	0.2741	0.0005	0.03*	
H3B	0.216	0.2204	-0.0127	0.03*	
C4	0.3346 (2)	0.2377 (4)	-0.15762 (18)	0.0233 (14)	
C5	0.3599 (3)	0.1412 (4)	-0.17244 (19)	0.0338 (16)	
H5	0.3976	0.1126	-0.1585	0.041*	
C6	0.3306 (3)	0.0856 (5)	-0.2077 (2)	0.0453 (19)	
H6	0.3457	0.0166	-0.2163	0.054*	
C7	0.2780 (3)	0.1339 (6)	-0.2302 (2)	0.0494 (19)	
H7	0.2583	0.0982	-0.2549	0.059*	
C8	0.2550 (3)	0.2326 (6)	-0.2168 (2)	0.047 (2)	
H8	0.2193	0.2644	-0.232	0.057*	
C9	0.2838 (3)	0.2843 (5)	-0.18156 (18)	0.0355 (17)	
Н9	0.2688	0.3535	-0.1732	0.043*	
C10	0.4536 (2)	0.3113 (4)	-0.11620 (17)	0.0209 (13)	
C11	0.4951 (3)	0.3159 (4)	-0.0793 (2)	0.0334 (16)	
H11	0.478	0.3175	-0.0496	0.04*	

C12	0.5619(3)	0.3182 (4)	-0.0861(2)	0.0355 (16)
H12	0.5902	0.3182	-0.0609	0.043*
C13	0.5875 (3)	0.3203 (4)	-0.1287 (2)	0.0394 (17)
H13	0.6332	0.3213	-0.1329	0.047*
C14	0.5468 (3)	0.3209 (5)	-0.1650 (2)	0.0428 (18)
H14	0.5643	0.3251	-0.1946	0.051*
C15	0.4797 (3)	0.3155 (4)	-0.15904 (19)	0.0319 (16)
H15	0.4518	0.3148	-0.1845	0.038*
C16	0.1716 (2)	0.3275 (4)	-0.09666 (17)	0.0214 (13)
C17	0.1544 (3)	0.3955 (4)	-0.13105 (18)	0.0272 (15)
H17	0.1719	0.4659	-0.1318	0.033*
C18	0.1117 (3)	0.3632 (5)	-0.16473 (19)	0.0321 (16)
H18	0.1003	0.4109	-0.1884	0.039*
C19	0.0864 (3)	0.2615 (5)	-0.1633 (2)	0.0371 (17)
H19	0.0582	0.2382	-0.1866	0.045*
C20	0.1014 (3)	0.1927 (5)	-0.12845 (19)	0.0340 (16)
H20	0.0829	0.1231	-0.1273	0.041*
C21	0.1441 (3)	0.2265 (4)	-0.0948(2)	0.0303 (15)
H21	0.1544	0.1799	-0.0705	0.036*
C22	0.1909 (3)	0.4486 (4)	-0.01484 (18)	0.0252 (14)
C23	0.1256 (3)	0.4710 (4)	-0.01890 (19)	0.0320 (15)
H23	0.1022	0.4454	-0.0443	0.038*
C24	0.0935 (3)	0.5310 (4)	0.0139 (2)	0.0384 (17)
H24	0.0483	0.5449	0.0112	0.046*
C25	0.1277 (3)	0.5698 (4)	0.0500(2)	0.0411 (17)
H25	0.106	0.6114	0.0722	0.049*
C26	0.1925 (3)	0.5492 (4)	0.0544 (2)	0.0360 (16)
H26	0.2158	0.5771	0.0794	0.043*
C27	0.2246 (3)	0.4872 (4)	0.02205 (19)	0.0317 (16)
H27	0.2694	0.4716	0.0254	0.038*
C28	0.4397 (3)	0.7145 (4)	-0.1139 (2)	0.0360 (17)
H28A	0.4557	0.7448	-0.1426	0.043*
H28B	0.4677	0.7422	-0.0894	0.043*
C29	0.4449 (3)	0.5936 (4)	-0.1155 (2)	0.0355 (17)
H29A	0.4471	0.5653	-0.0844	0.043*
H29B	0.4855	0.5733	-0.1311	0.043*
C30	0.3694 (3)	0.8705 (4)	-0.1134 (2)	0.0317 (16)
H30A	0.3886	0.8875	-0.143	0.038*
H30B	0.3957	0.9062	-0.0899	0.038*
C31	0.2998 (3)	0.9119 (4)	-0.1115 (2)	0.0341 (16)
H31A	0.2987	0.9883	-0.1205	0.041*
H31B	0.2831	0.9063	-0.0803	0.041*
C32	0.3548 (3)	0.7250 (4)	-0.0577 (2)	0.0348 (16)
H32A	0.3664	0.7873	-0.0386	0.042*
H32B	0.3823	0.664	-0.0482	0.042*
C33	0.2844 (3)	0.6965 (4)	-0.04927 (19)	0.0273 (15)
H33A	0.2577	0.7625	-0.0499	0.033*
H33B	0.28	0.6636	-0.0191	0.033*

C34	0.3534 (3)	0.7384 (4)	-0.19960 (18)	0.0273 (15)
C35	0.2534 (3)	0.6183 (5)	-0.18797 (18)	0.0310 (16)
Ni1B	0.44894 (3)	-0.04767 (5)	0.08998 (2)	0.02046 (17)
Fe2B	0.45935 (4)	0.17831 (6)	0.15060 (3)	0.0243 (2)
Cl1B	0.37760 (7)	-0.03749 (11)	0.01804 (5)	0.0343 (4)
S1B	0.39179 (7)	0.03313 (11)	0.14485 (5)	0.0295 (4)
S2B	0.52230 (9)	0.32868 (14)	0.14654 (7)	0.0539 (5)
S3B	0.51087 (6)	0.10121 (10)	0.08990 (5)	0.0217(3)
P1B	0.39939(7)	-0.19807(11)	0.10794 (5)	0.0240(4)
P2B	0.52737(7)	-0.13218(10)	0.05408 (5)	0.0214(4)
01B	0.3279(3)	0 2697 (4)	0.02100(2)	0.0211(1) 0.0724(18)
02B	0.5949(2)	0.2637(1)	0.22111(2) 0.21111(14)	0.0466(13)
N1B	0.3986(2)	0.2527(3)	0.10496 (15)	0.0293(13)
C1B	0.3990(2)	-0.3008(4)	0.06485(18)	0.0255(15) 0.0254(14)
H1B1	0.3757	-0.3643	0.0766	0.0251(11)
H1B2	0.3745	-0.2738	0.0785	0.03*
C2B	0.5745 0.4664 (3)	-0.3360(4)	0.0303	0.03
U2D	0.4618	-0.401	0.04913 (19)	0.0230(13)
112D1 112D1	0.4018	-0.3557	0.0303	0.034*
C2D	0.4923	-0.2500(4)	0.0739	0.034°
	0.3039 (3)	-0.2300 (4)	-0.0026	0.0220 (14)
ПЭD1 112D2	0.4700	-0.2208	-0.0030	0.027*
	0.3430	-0.2655	0.0095 0.15(12(19)	0.027°
C4D	0.4330(2)	-0.2003(4)	0.13013(18) 0.1701(2)	0.0230(14)
C2B	0.4855 (5)	-0.2249 (5)	0.1791 (2)	0.0340 (10)
НЭВ	0.5007	-0.1556	0.1/12	0.041*
C0B	0.5159(3)	-0.2807 (5)	0.2136 (2)	0.0464 (19)
H6B	0.5518	-0.2496	0.2288	0.056*
C/B	0.4944 (4)	-0.3808 (5)	0.2258 (2)	0.048 (2)
H/B	0.5161	-0.4209	0.2484	0.058*
C8B	0.4400 (4)	-0.4215 (5)	0.2042 (2)	0.049 (2)
H8B	0.4224	-0.4883	0.2137	0.059*
C9B	0.4115 (3)	-0.3675 (5)	0.1698 (2)	0.0413 (18)
H9B	0.3756	-0.3989	0.1547	0.05*
C10B	0.3133 (3)	-0.1854 (4)	0.1226 (2)	0.0365 (18)
C11B	0.2664 (3)	-0.1792 (5)	0.0880 (3)	0.0470 (19)
H11B	0.2796	-0.1817	0.0574	0.056*
C12B	0.2013 (3)	-0.1696 (5)	0.0986 (3)	0.060 (2)
H12B	0.1695	-0.1667	0.0754	0.072*
C13B	0.1832 (4)	-0.1644 (5)	0.1428 (3)	0.070 (3)
H13B	0.1384	-0.1575	0.1498	0.084*
C14B	0.2272 (3)	-0.1688 (5)	0.1773 (3)	0.064 (2)
H14B	0.2128	-0.1658	0.2077	0.076*
C15B	0.2949 (3)	-0.1780 (5)	0.1674 (2)	0.049 (2)
H15B	0.3264	-0.1791	0.1908	0.059*
C16B	0.5912 (2)	-0.1767 (4)	0.09261 (17)	0.0213 (13)
C17B	0.6102 (3)	-0.1082 (4)	0.12771 (18)	0.0266 (15)
H17B	0.5926	-0.0379	0.1294	0.032*
C18B	0.6529(3)	-0.1410 (4)	0.1590 (2)	0.0328 (16)

H18B	0.6654	-0.0928	0.1822	0.039*
C19B	0.6788 (3)	-0.2411 (5)	0.1584 (2)	0.0325 (16)
H19B	0.7071	-0.264	0.1817	0.039*
C20B	0.6634 (3)	-0.3097 (4)	0.1230 (2)	0.0334 (16)
H20B	0.6831	-0.3784	0.1213	0.04*
C21B	0.6193 (3)	-0.2783 (4)	0.0903 (2)	0.0262 (14)
H21B	0.6084	-0.3256	0.0664	0.031*
C22B	0.5708 (3)	-0.0520 (4)	0.01205 (18)	0.0240 (14)
C23B	0.6360 (3)	-0.0269 (4)	0.0164 (2)	0.0328 (16)
H23B	0.6597	-0.0514	0.0418	0.039*
C24B	0.6667 (3)	0.0341 (5)	-0.0165 (2)	0.0386 (17)
H24B	0.7112	0.052	-0.0128	0.046*
C25B	0.6347 (3)	0.0686 (5)	-0.0536 (2)	0.0416 (18)
H25B	0.6565	0.1102	-0.0758	0.05*
C26B	0.5692 (3)	0.0419 (5)	-0.0588 (2)	0.0451 (19)
H26B	0.5464	0.0644	-0.085	0.054*
C27B	0.5377 (3)	-0.0163 (4)	-0.0265 (2)	0.0305 (16)
H27B	0.4929	-0.0327	-0.0301	0.037*
C28B	0.3314 (3)	0.2115 (6)	0.1110 (3)	0.064 (2)
H28C	0.3121	0.2485	0.1373	0.077*
H28D	0.3058	0.2328	0.0842	0.077*
C29B	0.3230 (3)	0.0976 (4)	0.1174 (3)	0.045 (2)
H29C	0.316	0.0634	0.0878	0.054*
H29D	0.2836	0.0854	0.1358	0.054*
C30B	0.3981 (4)	0.3690 (5)	0.1132 (3)	0.069 (3)
H30C	0.3817	0.3846	0.1438	0.082*
H30D	0.3699	0.4057	0.0911	0.082*
C31B	0.4712 (4)	0.4084 (5)	0.1082 (3)	0.064 (2)
H31C	0.4744	0.4854	0.1159	0.076*
H31D	0.4859	0.3988	0.0767	0.076*
C32B	0.4138 (4)	0.2251 (6)	0.0561 (2)	0.064 (2)
H32C	0.3842	0.1671	0.0464	0.077*
H32D	0.4044	0.2887	0.0373	0.077*
C33B	0.4806 (3)	0.1911 (4)	0.04729 (18)	0.0264 (15)
H33C	0.5089	0.2551	0.0459	0.032*
H33D	0.4825	0.155	0.0176	0.032*
C34B	0.4154 (3)	0.2430 (5)	0.2004 (2)	0.0323 (17)
C35B	0.5116 (3)	0.1112 (4)	0.18801 (19)	0.0305 (16)
N2	0.2291 (4)	0.4853 (8)	-0.3224 (3)	0.160 (3)
N2B	0.4973 (3)	0.0005 (6)	0.3194 (3)	0.093 (3)
C36	0.3436 (4)	0.5235 (8)	-0.2875 (3)	0.095 (3)
C37	0.2791 (5)	0.5062 (6)	-0.3067 (3)	0.081 (3)
C36B	0.3942 (4)	-0.0543 (9)	0.2759 (3)	0.099 (4)
C37B	0.4515 (4)	-0.0249 (7)	0.3007 (3)	0.068 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.0181 (3)	0.0166 (3)	0.0250 (4)	-0.0006 (3)	-0.0001 (3)	0.0011 (3)
Fe	0.0248 (4)	0.0188 (4)	0.0225 (4)	0.0003 (3)	-0.0007 (3)	0.0024 (3)
Cl	0.0309 (7)	0.0225 (6)	0.0316 (8)	-0.0039 (6)	-0.0071 (6)	0.0006 (6)
S 1	0.0283 (7)	0.0219 (7)	0.0282 (8)	0.0009 (6)	0.0052 (6)	0.0025 (6)
S2	0.0346 (8)	0.0296 (7)	0.0470 (9)	0.0042 (7)	-0.0003 (7)	0.0026 (7)
S3	0.0213 (6)	0.0170 (6)	0.0283 (8)	0.0006 (6)	0.0024 (6)	0.0012 (6)
P1	0.0171 (7)	0.0217 (7)	0.0250 (8)	0.0010 (6)	-0.0021 (6)	0.0013 (6)
P2	0.0231 (7)	0.0165 (6)	0.0222 (8)	-0.0011 (6)	-0.0006 (6)	0.0002 (6)
01	0.072 (3)	0.057 (3)	0.054 (3)	-0.011 (3)	-0.001 (3)	0.008 (2)
O2	0.049 (3)	0.068 (3)	0.039 (3)	-0.015 (2)	-0.008 (2)	0.002 (2)
Ν	0.031 (3)	0.015 (2)	0.025 (3)	-0.003 (2)	0.0064 (19)	0.0075 (18)
C1	0.040 (3)	0.014 (3)	0.030 (3)	0.000 (3)	-0.002 (3)	-0.001 (2)
C2	0.020 (3)	0.015 (2)	0.032 (3)	0.001 (2)	0.000 (2)	-0.004 (2)
C3	0.022 (3)	0.025 (3)	0.027 (3)	-0.002 (2)	0.001 (2)	0.001 (2)
C4	0.021 (3)	0.016 (3)	0.033 (3)	-0.007(2)	0.005 (2)	0.002 (2)
C5	0.043 (4)	0.021 (3)	0.037 (4)	0.007 (3)	-0.002 (3)	0.001 (3)
C6	0.069 (4)	0.037 (3)	0.030 (4)	-0.014 (3)	0.007 (3)	-0.007 (3)
C7	0.045 (4)	0.078 (5)	0.024 (4)	-0.024 (4)	-0.001 (3)	-0.016 (3)
C8	0.027 (3)	0.085 (5)	0.030 (4)	0.007 (4)	-0.004 (3)	-0.009 (3)
C9	0.025 (3)	0.056 (4)	0.026 (3)	0.001 (3)	0.001 (3)	-0.007 (3)
C10	0.027 (3)	0.011 (2)	0.025 (3)	0.001 (2)	-0.006(2)	-0.001 (2)
C11	0.023 (3)	0.038 (3)	0.039 (4)	0.001 (3)	-0.004 (3)	-0.004 (3)
C12	0.034 (3)	0.037 (3)	0.036 (3)	0.009 (3)	-0.010 (3)	-0.004 (3)
C13	0.018 (3)	0.033 (3)	0.067 (4)	-0.004 (3)	-0.013 (3)	-0.003 (3)
C14	0.030 (3)	0.055 (4)	0.043 (4)	-0.001 (3)	0.006 (3)	-0.003 (3)
C15	0.023 (3)	0.043 (3)	0.030 (3)	-0.001 (3)	-0.009 (2)	0.002 (3)
C16	0.013 (2)	0.024 (3)	0.028 (3)	-0.014 (2)	0.003 (2)	-0.006(2)
C17	0.026 (3)	0.025 (3)	0.031 (3)	-0.002 (3)	-0.004 (2)	0.001 (2)
C18	0.029 (3)	0.038 (3)	0.029 (3)	0.003 (3)	0.003 (3)	0.004 (3)
C19	0.024 (3)	0.046 (4)	0.041 (4)	0.000 (3)	-0.006 (3)	-0.005 (3)
C20	0.027 (3)	0.039 (3)	0.036 (3)	-0.013 (3)	0.000 (3)	-0.005 (3)
C21	0.027 (3)	0.027 (3)	0.037 (3)	-0.003 (2)	-0.002 (3)	0.004 (3)
C22	0.029 (3)	0.015 (3)	0.031 (3)	-0.005 (2)	0.003 (3)	0.003 (2)
C23	0.041 (3)	0.028 (3)	0.027 (3)	0.002 (3)	0.003 (3)	0.000 (3)
C24	0.041 (3)	0.032 (3)	0.042 (4)	-0.003 (3)	0.015 (3)	0.005 (3)
C25	0.049 (4)	0.031 (3)	0.044 (4)	-0.004 (3)	0.023 (3)	-0.006 (3)
C26	0.046 (4)	0.030 (3)	0.032 (3)	-0.019 (3)	0.008 (3)	-0.011 (3)
C27	0.028 (3)	0.038 (3)	0.029 (3)	-0.007 (3)	0.012 (3)	0.000 (3)
C28	0.019 (3)	0.039 (3)	0.049 (4)	-0.006 (3)	-0.003 (3)	0.009 (3)
C29	0.022 (3)	0.033 (3)	0.051 (4)	-0.003 (3)	0.007 (3)	0.005 (3)
C30	0.033 (3)	0.024 (3)	0.039 (4)	-0.006 (3)	-0.004 (3)	-0.003 (3)
C31	0.043 (4)	0.022 (3)	0.037 (4)	0.007 (3)	0.002 (3)	-0.002 (3)
C32	0.038 (3)	0.028 (3)	0.039 (4)	0.003 (3)	-0.006 (3)	0.005 (3)
C33	0.027 (3)	0.020 (3)	0.035 (3)	-0.003 (2)	0.006 (3)	0.009 (2)
C34	0.025 (3)	0.039 (3)	0.018 (3)	0.000 (3)	0.001 (2)	-0.012(2)

C35	0.036 (3)	0.039(3)	0.019 (3)	0.002 (3)	0.001 (3)	0.003 (3)
Ni1B	0.0192 (3)	0.0153 (3)	0.0269 (4)	0.0002 (3)	0.0012 (3)	0.0002 (3)
Fe2B	0.0289 (4)	0.0196 (4)	0.0245 (4)	-0.0009 (4)	0.0069 (3)	0.0001 (3)
Cl1B	0.0354 (8)	0.0289 (7)	0.0385 (8)	0.0039 (7)	-0.0149 (6)	-0.0001 (7)
S1B	0.0301 (8)	0.0210(7)	0.0374 (9)	-0.0033 (6)	0.0135 (6)	-0.0024(6)
S2B	0.0527 (11)	0.0488 (10)	0.0602 (12)	0.0017 (9)	0.0091 (9)	-0.0036 (9)
S3B	0.0219(7)	0.0193 (6)	0.0240 (7)	0.0009 (6)	0.0018 (6)	-0.0022(6)
P1B	0.0200 (7)	0.0178 (7)	0.0343 (8)	-0.0017 (6)	-0.0002(6)	-0.0010 (6)
P2B	0.0204 (7)	0.0197 (7)	0.0239 (8)	0.0038 (6)	-0.0008 (6)	-0.0013 (6)
O1B	0.071 (4)	0.060 (3)	0.087 (4)	-0.010(3)	-0.015 (3)	0.033 (3)
O2B	0.054 (3)	0.051 (3)	0.035 (3)	0.000 (2)	-0.010(2)	0.000(2)
N1B	0.030 (3)	0.022(2)	0.036 (3)	0.003(2)	0.010 (2)	-0.004(2)
C1B	0.023(3)	0.026(3)	0.027(3)	-0.005(2)	-0.010(2)	0.000(2)
C2B	0.037(3)	0.018(3)	0.029(3)	-0.008(3)	-0.006(3)	-0.006(2)
C3B	0.027(3)	0.018(3)	0.023(3)	0.002(2)	-0.004(2)	-0.001(2)
C4B	0.027(3)	0.010(3) 0.033(3)	0.025(3)	-0.002(2)	0.001(2)	-0.005(3)
C5B	0.034(3)	0.030(3)	0.028(3) 0.038(4)	-0.003(3)	0.001(2) 0.003(3)	0.007(3)
C6B	0.034(3)	0.050(3) 0.064(4)	0.030(1) 0.039(4)	0.000(3)	0.003(3)	0.007(3)
C7B	0.030(1) 0.070(5)	0.001(1) 0.052(4)	0.023(4)	0.000(3) 0.014(4)	-0.002(3)	0.015(3)
C8B	0.070(5)	0.032(1)	0.025(1) 0.034(4)	-0.004(4)	0.002(3)	0.005(3)
C9B	0.009(3)	0.031(3)	0.034(4)	-0.005(3)	0.001(4)	-0.001(3)
C10B	0.021(3)	0.031(3) 0.021(3)	0.057(1)	-0.007(3)	0.000(3)	-0.006(3)
C11B	0.021(3) 0.028(3)	0.021(3) 0.034(3)	0.007(5)	-0.007(3)	-0.007(3)	0.000(3)
C12B	0.020(3)	0.037(4)	0.079(3) 0.130(7)	-0.002(3)	-0.004(4)	0.001(3)
C12D	0.013(3) 0.028(4)	0.037(4) 0.048(4)	0.130(7) 0.135(8)	0.003(3)	0.004(4)	0.017(4)
C14B	0.028(4) 0.041(4)	0.048(4) 0.043(4)	0.133 (8)	0.009(3)	0.017(4) 0.036(4)	0.023(3) 0.018(4)
C15B	0.041(4)	0.043(4)	0.107(0)	-0.005(3)	0.030(4)	0.010(4)
C16B	0.042(4)	0.030(3)	0.070(3)	-0.008(2)	-0.001(2)	0.007(3)
C17B	0.020(3)	0.023(3)	0.013(3)	0.000(2)	-0.001(2)	-0.003(2)
C18B	0.021(3)	0.022(3)	0.037(3) 0.043(4)	0.000(3)	-0.002(3)	-0.003(3)
C10B	0.027(3)	0.027(3)	0.043(4)	-0.001(3)	-0.003(3)	0.004(3)
C20B	0.021(3)	0.042(3)	0.034(4)	0.001(3)	-0.004(3)	0.010(3)
C20B	0.030(3)	0.023(3)	0.043(4)	0.008(3)	-0.003(3)	-0.003(3)
C21D	0.027(3)	0.021(3)	0.030(3)	0.004(2)	0.002(3)	-0.002(3)
C22B	0.034(3)	0.014(3)	0.024(3)	0.007(2)	0.001(2)	0.001(2)
C23D	0.030(3)	0.032(3)	0.030(3)	-0.003(3)	0.008(3)	0.003(3)
C24D	0.055(3)	0.032(3)	0.049(4)	-0.004(3)	0.010(3)	0.002(3)
C25D	0.001(4)	0.032(3)	0.032(4)	0.000(3)	0.019(3)	0.000(3)
C20D	0.000(4)	0.042(4)	0.027(4)	0.015(4)	0.011(3)	0.002(3)
C2/D	0.040(3)	0.018(3)	0.034(4)	0.004(3)	0.000(3)	-0.006(2)
C20D	0.037(4)	0.008(4)	0.088(3)	-0.020(4)	-0.020(4)	0.041(4)
C29B	0.026(3)	0.026(3)	0.085(5)	-0.004(3)	0.014(3)	-0.003(3)
COUB	0.000(5)	0.032(4)	0.108(6)	0.018(4)	-0.037(4)	-0.01/(4)
C31B	0.091 (6)	0.035 (4)	0.064 (5)	0.003(4)	0.015 (4)	0.004 (4)
C32B	0.086 (5)	0.078 (5)	0.030(4)	0.036 (5)	0.002(4)	0.023(4)
C33B	0.048 (4)	0.014(3)	0.01/(3)	0.001(3)	0.005(3)	0.005 (2)
C34B	0.027(3)	0.021(3)	0.048 (4)	-0.010(3)	-0.00/(3)	0.015(3)
C35B	0.040(3)	0.024 (3)	0.028 (3)	-0.010(3)	0.006 (3)	0.001 (3)
NZ	0.091 (5)	0.217 (1/)	0.172(7)	0.084 (6)	-0.062 (5)	-0.14/(6)

N2B	0.067 (4)	0.124 (6)	0.086 (6)	0.049 (5)	0.001 (4)	-0.017 (5)
C36	0.071 (6)	0.126 (7)	0.089 (6)	-0.026 (6)	0.003 (5)	-0.056 (5)
C37	0.092 (6)	0.068 (4)	0.082 (6)	0.036 (5)	-0.018 (5)	-0.057 (4)
C36B	0.068 (6)	0.141 (9)	0.087 (7)	-0.009 (6)	-0.018 (5)	0.007 (7)
C37B	0.069 (5)	0.081 (5)	0.053 (5)	0.035 (5)	0.018 (4)	0.010 (4)

Geometric parameters (Å, °)

Ni—P1	2.2012 (14)	Ni1B—S1B	2.2495 (16)
Ni—P2	2.2060 (15)	Ni1B—S3B	2.2536 (14)
Ni—S3	2.2517 (13)	Ni1B—Cl1B	2.5971 (16)
Ni—S1	2.2574 (15)	Fe2B—C35B	1.760 (6)
Ni—Cl	2.5787 (14)	Fe2B—C34B	1.912 (7)
Fe—C35	1.759 (6)	Fe2B—N1B	2.065 (5)
Fe—C34	1.829 (6)	Fe2B—S2B	2.2839 (19)
Fe—N	2.048 (4)	Fe2B—S1B	2.2909 (16)
Fe—S1	2.2865 (15)	Fe2B—S3B	2.3029 (15)
Fe—S2	2.2978 (16)	S1B-C29B	1.821 (7)
Fe—S3	2.3159 (15)	S2B—C31B	1.844 (8)
S1—C29	1.838 (6)	S3B—C33B	1.803 (5)
S2—C31	1.831 (6)	P1B—C4B	1.810 (6)
S3—C33	1.811 (6)	P1B—C1B	1.812 (5)
P1—C4	1.825 (5)	P1B-C10B	1.833 (6)
P1-C10	1.839 (5)	P2B—C3B	1.818 (5)
P1—C1	1.841 (5)	P2B—C16B	1.830 (5)
P2—C3	1.807 (5)	P2B—C22B	1.833 (5)
P2—C22	1.825 (5)	O1B—C34B	0.861 (8)
P2—C16	1.834 (5)	O2B—C35B	1.137 (7)
O1—C34	1.065 (7)	N1B—C30B	1.471 (8)
O2—C35	1.151 (7)	N1B—C28B	1.488 (8)
N—C30	1.499 (6)	N1B—C32B	1.523 (8)
N—C32	1.508 (7)	C1B—C2B	1.529 (8)
N—C28	1.527 (7)	C1B—H1B1	0.99
C1—C2	1.505 (7)	C1B—H1B2	0.99
C1—H1A	0.99	C2B—C3B	1.549 (7)
C1—H1B	0.99	C2B—H2B1	0.99
C2—C3	1.533 (7)	C2B—H2B2	0.99
C2—H2A	0.99	C3B—H3B1	0.99
C2—H2B	0.99	C3B—H3B2	0.99
С3—НЗА	0.99	C4B—C5B	1.367 (8)
С3—Н3В	0.99	C4B—C9B	1.400 (8)
C4—C5	1.384 (7)	C5B—C6B	1.390 (8)
C4—C9	1.394 (8)	C5B—H5B	0.95
C5—C6	1.394 (8)	C6B—C7B	1.373 (9)
С5—Н5	0.95	С6В—Н6В	0.95
C6—C7	1.409 (9)	C7B—C8B	1.387 (10)
С6—Н6	0.95	С7В—Н7В	0.95
C7—C8	1.379 (9)	C8B—C9B	1.358 (9)

С7—Н7	0.95	C8B—H8B	0.95
C8—C9	1.365 (8)	С9В—Н9В	0.95
С8—Н8	0.95	C10B—C15B	1.387 (9)
С9—Н9	0.95	C10B—C11B	1.415 (9)
C10—C15	1.382 (7)	C11B—C12B	1.384 (9)
C10—C11	1.392 (8)	C11B—H11B	0.95
C11—C12	1.391 (8)	C12B—C13B	1.366 (12)
C11—H11	0.95	C12B—H12B	0.95
C12—C13	1.370 (9)	C13B—C14B	1.371 (11)
C12—H12	0.95	C13B—H13B	0.95
C13—C14	1.368 (8)	C14B—C15B	1.431 (9)
С13—Н13	0.95	C14B—H14B	0.95
C14—C15	1.396 (8)	C15B—H15B	0.95
C14—H14	0.95	C16B—C21B	1.395 (7)
С15—Н15	0.95	C16B—C17B	1.404 (7)
C16—C17	1.374 (7)	C17B—C18B	1.343 (8)
C16—C21	1.382 (7)	C17B—H17B	0.95
C17—C18	1.391 (8)	C18B—C19B	1.358 (8)
С17—Н17	0.95	C18B—H18B	0.95
C18—C19	1.373 (8)	C19B—C20B	1.391 (8)
С18—Н18	0.95	C19B—H19B	0.95
C19—C20	1.380 (8)	C20B—C21B	1.386 (8)
С19—Н19	0.95	C20B—H20B	0.95
C20—C21	1,397 (8)	C21B—H21B	0.95
C20—H20	0.95	$C^{22}B$ $C^{23}B$	1 384 (8)
C21—H21	0.95	C22B—C27B	1.406 (8)
C^{22} C^{23}	1 380 (8)	C^{23B} C^{24B}	1 391 (8)
C22—C27	1.384 (8)	C23B—H23B	0.95
C23—C24	1.395 (8)	C24B—C25B	1.355 (9)
C23—H23	0.95	C24B—H24B	0.95
C_{24} C_{25}	1.373 (9)	C25B—C26B	1.399 (9)
C24—H24	0.95	C25B—H25B	0.95
C_{25} C_{26}	1.366 (9)	C26B—C27B	1.369 (9)
C25—H25	0.95	C26B—H26B	0.95
C26—C27	1,400 (8)	C27B—H27B	0.95
C26—H26	0.95	C28B—C29B	1.445 (9)
С27—Н27	0.95	C28B—H28C	0.99
C28—C29	1.514 (8)	C28B—H28D	0.99
C28—H28A	0.99	C29B—H29C	0.99
C28—H28B	0.99	C29B—H29D	0.99
C29—H29A	0.99	C30B—C31B	1.591 (11)
C29—H29B	0.99	C30B—H30C	0.99
C30—C31	1.525 (8)	C30B—H30D	0.99
C30—H30A	0.99	C31B—H31C	0.99
С30—Н30В	0.99	C31B—H31D	0.99
C31—H31A	0.99	C32B—C33B	1.464 (9)
C31—H31B	0.99	C32B—H32C	0.99
C32—C33	1.514 (8)	C32B—H32D	0.99

С32—Н32А	0.99	С33В—Н33С	0.99
C32—H32B	0.99	C33B—H33D	0.99
С33—Н33А	0.99	N2-C37	1.160 (11)
С33—Н33В	0.99	N2B—C37B	1.141 (11)
Ni1B—P1B	2.2018 (15)	C36—C37	1.462 (13)
Ni1B—P2B	2.2046 (15)	C36B—C37B	1.439 (12)
	2.2010(10)	0002 0012	(1_)
P1—Ni—P2	92.88 (5)	P1B—Ni1B—S1B	87.92 (6)
P1—Ni—S3	165.43 (6)	P2B—Ni1B—S1B	161.55 (6)
P2—Ni—S3	88.90 (5)	P1B—Ni1B—S3B	164.85 (6)
P1—Ni—S1	87.87 (5)	P2B—Ni1B—S3B	88.78 (5)
P2—Ni—S1	160.38 (6)	S1B—Ni1B—S3B	85.85 (5)
S3—Ni—S1	85.67 (5)	P1B—Ni1B—Cl1B	88.79 (5)
P1—Ni—Cl	88.51 (5)	P2B—Ni1B—Cl1B	92.29 (5)
P2—Ni—Cl	92.94 (5)	S1B—Ni1B—Cl1B	106.16 (6)
\$3—Ni—Cl	105.85 (5)	S3B—Ni1B—Cl1B	106.21 (5)
S1—Ni—Cl	106.68 (5)	C35B—Fe2B—C34B	90.1 (3)
C35—Fe—C34	91.6 (2)	C35B—Fe2B—N1B	177.9 (2)
C35—Fe—N	175.2 (2)	C34B—Fe2B—N1B	91.8 (2)
C34—Fe—N	92.5 (2)	C35B— $Fe2B$ — $S2B$	94.41 (19)
C35—Fe—S1	95 72 (19)	C34B—Fe2B—S2B	87 86 (18)
C34—Fe—S1	96 10 (18)	N1B— $Fe2B$ — $S2B$	86 57 (13)
N—Fe—S1	86.26 (12)	C35B— $Fe2B$ — $S1B$	92.44 (18)
C35—Fe—S2	90.91 (19)	C34B—Fe2B—S1B	95 97 (18)
C34—Fe—S2	87 63 (18)	N1B—Fe2B—S1B	86 47 (13)
N - Fe - S2	86.83 (12)	S2B— $Fe2B$ — $S1B$	172.15 (7)
S1—Fe—S2	172 29 (7)	C35B Fe2B $S3B$	90 78 (19)
C35—Fe—S3	88.34 (18)	C34B—Fe2B—S3B	179.1 (2)
C34—Fe—S3	179.60 (19)	N1B—Fe2B—S3B	87.29 (13)
N - Fe - S3	87.58 (12)	S2B— $Fe2B$ — $S3B$	92.30 (6)
S1—Fe—S3	83.53 (5)	S1B—Fe2B—S3B	83.76 (5)
S2—Fe—S3	92.76 (6)	C_{29B} S1B Ni1B	106.3(2)
C29—S1—Ni	105.5 (2)	C29B— $S1B$ — $Fe2B$	99.02 (19)
C29—S1—Fe	99.79 (18)	Ni1B—S1B—Fe2B	95.18 (6)
Ni—S1—Fe	95.51 (6)	C31B— $S2B$ — $Fe2B$	98.7 (2)
C31—S2—Fe	98.65 (18)	C33B—S3B—Ni1B	108.53 (19)
C33—S3—Ni	109.84 (18)	C33B—S3B—Fe2B	97.50 (18)
C33—S3—Fe	96.70 (17)	Ni1B—S3B—Fe2B	94.74 (5)
Ni—S3—Fe	94.85 (5)	C4B—P1B—C1B	103.1 (2)
C4—P1—C10	104.3 (2)	C4B—P1B—C10B	103.2 (3)
C4—P1—C1	103.2 (2)	C1B—P1B—C10B	103.0 (3)
C10—P1—C1	101.9 (2)	C4B—P1B—Ni1B	114.42 (18)
C4—P1—Ni	113.45 (17)	C1B—P1B—Ni1B	115.71 (18)
C10—P1—Ni	116.11 (16)	C10B—P1B—Ni1B	115.63 (19)
C1—P1—Ni	116.24 (18)	C3B—P2B—C16B	105.9 (2)
C3—P2—C22	101.7 (2)	C3B—P2B—C22B	102.3 (2)
C3—P2—C16	105.9 (2)	C16B—P2B—C22B	103.9 (2)
C22—P2—C16	104.3 (2)	C3B—P2B—Ni1B	116.50 (18)

$C_2 \rightarrow D_2 \rightarrow U'$	115(1)(10)	C1(D D2D N'1D	111(7(17))
C3—P2—N1	115.61 (18)	C16B—P2B—N11B	111.6/(1/)
C22—P2—N1	115.54 (17)	C22B—P2B—N11B	115.26 (17)
C16—P2—Ni	112.53 (17)	C30B—N1B—C28B	108.2 (5)
C30—N—C32	110.8 (4)	C30B—N1B—C32B	112.5 (5)
C30—N—C28	106.6 (4)	C28B—N1B—C32B	103.2 (5)
C32—N—C28	105.9 (4)	C30B—N1B—Fe2B	109.8 (4)
C30—N—Fe	109.4 (3)	C28B—N1B—Fe2B	109.3 (4)
C32—N—Fe	114.3 (3)	C32B—N1B—Fe2B	113.5 (4)
C28—N—Fe	109.4 (3)	C2B—C1B—P1B	114.5 (4)
C2-C1-P1	114.5 (4)	C2B—C1B—H1B1	108.6
C^2 C^1 H^1A	108.6	P1B-C1B-H1B1	108.6
P1 - C1 - H1A	108.6	$C^{2}B-C^{1}B-H^{1}B^{2}$	108.6
$C_2 = C_1 = H_1 P_1$	108.6		108.6
	108.0		108.0
	108.0		107.0
HIA—CI—HIB	107.6	C1B - C2B - C3B	114.4 (4)
C1C2C3	113.5 (4)	C1B—C2B—H2B1	108.7
C1—C2—H2A	108.9	C3B—C2B—H2B1	108.7
C3—C2—H2A	108.9	C1B—C2B—H2B2	108.7
C1—C2—H2B	108.9	C3B—C2B—H2B2	108.7
C3—C2—H2B	108.9	H2B1—C2B—H2B2	107.6
H2A—C2—H2B	107.7	C2B—C3B—P2B	114.7 (4)
C2—C3—P2	115.9 (4)	C2B—C3B—H3B1	108.6
С2—С3—НЗА	108.3	P2B-C3B-H3B1	108.6
Р2—С3—Н3А	108.3	C2B—C3B—H3B2	108.6
С2—С3—Н3В	108.3	P2B—C3B—H3B2	108.6
Р2—С3—Н3В	108.3	H3B1—C3B—H3B2	107.6
H3A—C3—H3B	107.4	C5B—C4B—C9B	116.8 (5)
$C_{5} - C_{4} - C_{9}$	118 9 (5)	C5B-C4B-P1B	121.2(4)
$C_{5} - C_{4} - P_{1}$	1210(4)	C9B-C4B-P1B	121.2(1) 121.9(4)
C9 - C4 - P1	121.0(1) 120.0(4)	C4B-C5B-C6B	122.0 (6)
C_{4} C_{5} C_{6}	120.6 (4)	CAB C5B H5B	110
$C_{1} = C_{2} = C_{0}$	120.0 (0)	C4D-C5D-115D	119
C4 - C5 - H5	119.7	C0B - C3B - H3B	119
Co-C3-H3	119.7	C/B = C0B = C3B	120.2 (0)
	118.5 (6)		119.9
С5—С6—Н6	120.7	С5В—С6В—Н6В	119.9
С7—С6—Н6	120.7	C6B—C7B—C8B	118.2 (6)
C8—C7—C6	120.6 (6)	C6B—C7B—H7B	120.9
С8—С7—Н7	119.7	C8B—C7B—H7B	120.9
С6—С7—Н7	119.7	C9B—C8B—C7B	121.0 (6)
C9—C8—C7	119.7 (6)	C9B—C8B—H8B	119.5
С9—С8—Н8	120.2	C7B—C8B—H8B	119.5
С7—С8—Н8	120.2	C8B—C9B—C4B	121.6 (6)
C8—C9—C4	121.4 (6)	C8B—C9B—H9B	119.2
С8—С9—Н9	119.3	C4B—C9B—H9B	119.2
С4—С9—Н9	119.3	C15B—C10B—C11B	120.5 (6)
C15—C10—C11	119.1 (5)	C15B—C10B—P1B	119.9 (5)
C15-C10-P1	121.6 (4)	C11B—C10B—P1B	119.5 (5)
C11-C10-P1	119.3 (4)	C12B— $C11B$ — $C10B$	1201(7)

C10-C11-C12	119.5 (5)	C12B—C11B—H11B	120
C10-C11-H11	120.2	C10B—C11B—H11B	120
C12—C11—H11	120.2	C13B—C12B—C11B	119.2 (7)
C13—C12—C11	121.0 (5)	C13B—C12B—H12B	120.4
C13—C12—H12	119.5	C11B—C12B—H12B	120.4
C11—C12—H12	119.5	C12B— $C13B$ — $C14B$	122.5 (7)
C14-C13-C12	119.6 (5)	C12B— $C13B$ — $H13B$	118.7
C14—C13—H13	120.2	C14B— $C13B$ — $H13B$	118 7
C12—C13—H13	120.2	C13B— $C14B$ — $C15B$	119.6 (8)
C13 - C14 - C15	120.2	C13B— $C14B$ — $H14B$	120.2
C_{13} C_{14} H_{14}	119.8	C15B $C14B$ $H14B$	120.2
C15 - C14 - H14	119.8	C10B $C15B$ $C14B$	120.2 1180(7)
C10-C15-C14	120.3 (5)	C10B $C15B$ $C11B$	121
C10-C15-H15	119.9	C14B $C15B$ $H15B$	121
C_{14} C_{15} H_{15}	110.0	$C_{14B} = C_{16B} = C_{17B}$	121 1183(5)
C17 - C16 - C21	119.1 (5)	C_{21B} C_{16B} P_{2B}	110.5(5) 122.9(4)
$C_{17} = C_{10} = C_{21}$	119.1(3) 118.8(4)	C17B C16B P2B	122.9(+) 118.7(4)
$C_{1} = C_{10} = 12$	110.0(4)	C18P C17P C16P	110.7(4) 120.7(5)
$C_{21} = C_{10} = 12$	121.3(4) 121.3(5)	C18B - C17B - C10B	120.7(3)
$C_{10} = C_{17} = C_{18}$	121.5 (5)	$C_{16B} = C_{17B} = H_{17B}$	119.7
$C_{10} - C_{17} - H_{17}$	119.4	C10B - C1/B - D1/B	119.7
$C_{10} = C_{17} = M_{17}$	119.4	C17D $C18D$ $C19D$	121.9 (0)
$C_{19} = C_{18} = C_{17}$	119.0 (3)	C10P $C10P$ $H19P$	119
C17 C18 H18	120.5	$C_{19}D = C_{10}D = C_{20}D$	119
C17 - C18 - C18	120.3	$C_{10} = C_{10} = C_{20} = C_{20}$	119.1 (5)
C18 - C19 - C20	120.9 (5)	C_{18B} C_{19B} H_{19B} C_{20B} C_{10B} H_{10B}	120.5
С18—С19—Н19	119.0	$C_{20} = C_{19} = C_{10} = C_{10}$	120.3
C10 C20 C21	119.0	$C_{21B} = C_{20B} = C_{19B}$	120.4 (5)
C19 - C20 - C21	119.4 (5)	$C_{21B} = C_{20B} = H_{20B}$	119.8
C19—C20—H20	120.3	C19B - C20B - H20B	119.8
C21—C20—H20	120.3	$C_{20B} = C_{21B} = C_{10B}$	119.6 (5)
C16 - C21 - C20	120.3 (5)	C20B—C21B—H21B	120.2
C16—C21—H21	119.9	C16B—C21B—H21B	120.2
C20—C21—H21	119.9	$C_{23}B = C_{22}B = C_{27}B$	118.4 (5)
$C_{23} = C_{22} = C_{27}$	119.2 (5)	C23B—C22B—P2B	122.2 (4)
C23—C22—P2	122.0 (4)	C27B—C22B—P2B	119.3 (4)
C27—C22—P2	118.8 (4)	C22B—C23B—C24B	119.9 (6)
C22—C23—C24	120.7 (5)	C22B—C23B—H23B	120.1
С22—С23—Н23	119.7	C24B—C23B—H23B	120.1
C24—C23—H23	119.7	C25B—C24B—C23B	121.7 (6)
C25—C24—C23	119.5 (6)	C25B—C24B—H24B	119.1
C25—C24—H24	120.2	C23B—C24B—H24B	119.1
C23—C24—H24	120.2	C24B—C25B—C26B	118.9 (6)
C26—C25—C24	120.6 (6)	C24B—C25B—H25B	120.6
C26—C25—H25	119.7	C26B—C25B—H25B	120.6
C24—C25—H25	119.7	C27B—C26B—C25B	120.4 (6)
C25—C26—C27	120.0 (6)	C27B—C26B—H26B	119.8
C25—C26—H26	120	C25B—C26B—H26B	119.8
С27—С26—Н26	120	C26B—C27B—C22B	120.6 (6)

$C^{22} - C^{27} - C^{26}$	120.0 (5)	C26B_C27B_H27B	119 7
$C_{22} = C_{27} = C_{20}$	120.0 (5)	$C_{22}B = C_{27}B = H_{27}B$	119.7
$C_{22} = C_{27} = H_{27}$	120	$\begin{array}{c} C22B \\ C29B \\ C28B \\ N1B \\ N1B \\ \end{array}$	117.8 (6)
$C_{20} = C_{27} = H_{27}$	1110(A)	$C_{20B} = C_{20B} = H_{1B}$	107.0
$C_{29} = C_{28} = N$	111.9 (4)	N1P C28P H28C	107.9
N C29 H28A	109.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
$N = C_{20} = H_{20} R$	109.2	$C_{29}D - C_{20}D - H_{20}D$	107.9
C_{29} C_{28} H_{28B}	109.2	$NIB = C_{28B} = H_{28D}$	107.9
$N - C_{28} - H_{28B}$	109.2	$H_{28}C = C_{28}B = H_{28}D$	10/.2
H28A—C28—H28B	107.9	C28B—C29B—SIB	113.7 (5)
C28—C29—S1	111.9 (4)	C28B—C29B—H29C	108.8
С28—С29—Н29А	109.2	S1B—C29B—H29C	108.8
S1—C29—H29A	109.2	C28B—C29B—H29D	108.8
С28—С29—Н29В	109.2	S1B—C29B—H29D	108.8
S1—C29—H29B	109.2	H29C—C29B—H29D	107.7
H29A—C29—H29B	107.9	N1B—C30B—C31B	106.4 (5)
N-C30-C31	109.8 (4)	N1B—C30B—H30C	110.5
N—C30—H30A	109.7	C31B—C30B—H30C	110.5
С31—С30—Н30А	109.7	N1B-C30B-H30D	110.5
N—C30—H30B	109.7	C31B—C30B—H30D	110.5
C31—C30—H30B	109.7	H30C-C30B-H30D	108.6
H30A—C30—H30B	108.2	C30B—C31B—S2B	108.4 (5)
C30—C31—S2	109.7 (4)	C30B—C31B—H31C	110
C30—C31—H31A	109.7	S2B—C31B—H31C	110
S2—C31—H31A	109.7	C30B—C31B—H31D	110
C30—C31—H31B	109.7	S2B—C31B—H31D	110
S2—C31—H31B	109.7	H31C—C31B—H31D	108.4
H31A—C31—H31B	108.2	C33B-C32B-N1B	115.4 (5)
$N - C_{32} - C_{33}$	114.1 (5)	C33B-C32B-H32C	108.4
N-C32-H32A	108 7	N1B-C32B-H32C	108.4
C_{33} C_{32} H_{32A}	108.7	C33B - C32B - H32D	108.4
$N = C_{32} = H_{32B}$	108.7	N1B-C32B-H32D	108.4
C33_C32_H32B	108.7	H_{32C} C_{32B} H_{32D}	107.5
H32A C32 H32B	107.6	C32B C33B S3B	107.3 112.3(4)
$C_{32} C_{32} C_{33} C_{33}$	107.0	C32B C33B H33C	100.1
$C_{32} = C_{33} = S_{33}$	100.5	C32D-C33D-1135C	109.1
C32—C33—H35A	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.1
53—C33—ПЗЗА С22 С22 Ц22Р	109.5		109.1
C32—C33—H33B	109.5	53B—C33B—H33D	109.1
S3-C33-H33B	109.5	H33C-C33B-H33D	107.9
H33A—C33—H33B	108.1	OIB—C34B—Fe2B	1/5.4 (8)
OI—C34—Fe	175.3 (5)	O2B—C35B—Fe2B	176.9 (5)
02—C35—Fe	176.9 (5)	N2—C37—C36	175.4 (9)
P1B—Ni1B—P2B	92.84 (6)	N2B—C37B—C36B	178.0 (10)
Fe—S1—C29—C28	-9.4 (6)	C29B—C28B—N1B—Fe2B	-43.0 (10)
S1—C29—C28—N	38.6 (8)	Fe2B—S2B—C31B—C30B	25.8 (8)
C29—C28—N—Fe	-51.9 (7)	S2B-C31B-C30B-N1B	-54.9 (10)
Fe—S2—C31—C30	23.7 (6)	C31B—C30B—N1B—Fe2B	58.7 (9)
S2—C31—C30—N	-51.7 (8)	Fe2B—S3B—C33B—C32B	-35.8 (7)

C31—C30—N—Fe	55.3 (7)	S3B—C33B—C32B—N1B	42.1 (10)
Fe—S3—C33—C32	-38.3 (6)	C33B—C32B—N1B—Fe2B	-24.5 (10)
S3—C33—C32—N	45.8 (8)	P1-C1-C2-C3	-68.5 (8)
C33—C32—N—Fe	-27.3 (8)	C1—C2—C3—P2	69.7 (8)
Fe2B—S1B—C29B—C28B	-3.0 (8)	P1B-C1B-C2B-C3B	-69.3 (8)
S1B—C29B—C28B—N1B	29.6 (12)	C1B—C2B—C3B—P2B	67.1 (8)