Download citation
Download citation
link to html
Single crystals of the LaMg2 cubic Laves phase were synthesized by arc melting. The binary LaMg2 compound has been shown to adopt the MgCu2-type structure. The coordination sphere of the rare earth metal, adopting a site symmetry of \overline{1}, consists only of 12 Mg atoms. The site symmetry of the alkaline earth metal is \overline{3}m, giving rise to superimposed distorted MgLa6 and MgMg6 octa­hedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805021343/br6195sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805021343/br6195Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma]() = 0.000 Å
  • R factor = 0.008
  • wR factor = 0.024
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 4.00 Ratio
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.60 From the CIF: _reflns_number_total 50 Count of symmetry unique reflns 1 Completeness (_total/calc) 5000.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 49 Fraction of Friedel pairs measured 49.000 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: KM4B8 (Galdecki et al., 1996); cell refinement: KM4B8; data reduction: JANA2000 (Petricek et al., 2000); program(s) used to solve structure: JANA2000; program(s) used to refine structure: JANA2000; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000.

Lanthanum Dimagnesium top
Crystal data top
LaMg2Dx = 3.642 Mg m3
Mr = 187.53Mo Kα radiation, λ = 0.71069 Å
Cubic, Fd3mCell parameters from 25 reflections
Hall symbol: -F 4vw 2vw 3θ = 2.2–27°
a = 8.810 (2) ŵ = 12.55 mm1
V = 683.8 (3) Å3T = 295 K
Z = 8Elongated tablet, colorless
F(000) = 6480.36 × 0.1 × 0.07 mm
Data collection top
Oxford Diffraction point-detector
diffractometer
46 reflections with I > 3σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.6°, θmin = 4.0°
ω/2θ scansh = 1111
Absorption correction: gaussian
(JANA2000; Petricek et al., 2000)
k = 1111
Tmin = 0.323, Tmax = 0.550l = 011
648 measured reflections3 standard reflections every 100 reflections
50 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: Patterson
R[F > 3σ(F)] = 0.008Secondary atom site location: difference Fourier map
wR(F) = 0.025Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.14(Δ/σ)max = 0.002
50 reflectionsΔρmax = 0.11 e Å3
4 parametersΔρmin = 0.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.6250.6250.1250.0195 (2)
Mg100.500.0145 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0195 (2)0.0195 (2)0.0195 (2)000
Mg10.0145 (3)0.0145 (3)0.0145 (3)0.0012 (5)0.0012 (5)0.0012 (5)
Geometric parameters (Å, º) top
La1—Mg1i3.6524 (8)La1—Mg1x3.6524 (8)
La1—Mg1ii3.6524 (8)La1—Mg1xi3.6524 (8)
La1—Mg1iii3.6524 (8)La1—Mg1xii3.6524 (8)
La1—Mg1iv3.6524 (8)Mg1—Mg1xiii3.1148 (7)
La1—Mg1v3.6524 (8)Mg1—Mg1xiv3.1148 (7)
La1—Mg1vi3.6524 (8)Mg1—Mg1vii3.1148 (7)
La1—Mg1vii3.6524 (8)Mg1—Mg1xv3.1148 (7)
La1—Mg1viii3.6524 (8)Mg1—Mg1xvi3.1148 (7)
La1—Mg1ix3.6524 (8)Mg1—Mg1xii3.1148 (7)
Mg1i—La1—Mg1ii117.036Mg1xi—La1—Mg1v50.479
Mg1i—La1—Mg1iii117.036Mg1xi—La1—Mg1vi95.216
Mg1i—La1—Mg1iv95.216Mg1xi—La1—Mg1vii95.216
Mg1i—La1—Mg1v95.216Mg1xi—La1—Mg1viii144.903
Mg1i—La1—Mg1vi50.479Mg1xi—La1—Mg1ix50.479
Mg1i—La1—Mg1vii144.903Mg1xi—La1—Mg1x117.036
Mg1i—La1—Mg1viii95.216Mg1xi—La1—Mg1xii117.036
Mg1i—La1—Mg1ix50.479Mg1xii—La1—Mg1i144.903
Mg1i—La1—Mg1x95.216Mg1xii—La1—Mg1ii50.479
Mg1i—La1—Mg1xi50.479Mg1xii—La1—Mg1iii95.216
Mg1i—La1—Mg1xii144.903Mg1xii—La1—Mg1iv50.479
Mg1ii—La1—Mg1i117.036Mg1xii—La1—Mg1v95.216
Mg1ii—La1—Mg1iii117.036Mg1xii—La1—Mg1vi144.903
Mg1ii—La1—Mg1iv50.479Mg1xii—La1—Mg1vii50.479
Mg1ii—La1—Mg1v144.903Mg1xii—La1—Mg1viii95.216
Mg1ii—La1—Mg1vi95.216Mg1xii—La1—Mg1ix95.216
Mg1ii—La1—Mg1vii95.216Mg1xii—La1—Mg1x117.036
Mg1ii—La1—Mg1viii50.479Mg1xii—La1—Mg1xi117.036
Mg1ii—La1—Mg1ix95.216La1xvii—Mg1—La1xviii117.036
Mg1ii—La1—Mg1x95.216La1xvii—Mg1—La1xix117.036
Mg1ii—La1—Mg1xi144.903La1xvii—Mg1—La1xx180
Mg1ii—La1—Mg1xii50.479La1xvii—Mg1—La1xxi62.964
Mg1iii—La1—Mg1i117.036La1xvii—Mg1—La1xxii62.964
Mg1iii—La1—Mg1ii117.036La1xvii—Mg1—Mg1xiii115.239
Mg1iii—La1—Mg1iv144.903La1xvii—Mg1—Mg1xiv64.761
Mg1iii—La1—Mg1v50.479La1xvii—Mg1—Mg1vii115.239
Mg1iii—La1—Mg1vi95.216La1xvii—Mg1—Mg1xv64.761
Mg1iii—La1—Mg1vii50.479La1xvii—Mg1—Mg1xvi64.761
Mg1iii—La1—Mg1viii95.216La1xvii—Mg1—Mg1xii115.239
Mg1iii—La1—Mg1ix144.903La1xviii—Mg1—La1xvii117.036
Mg1iii—La1—Mg1x50.479La1xviii—Mg1—La1xix117.036
Mg1iii—La1—Mg1xi95.216La1xviii—Mg1—La1xx62.964
Mg1iii—La1—Mg1xii95.216La1xviii—Mg1—La1xxi180
Mg1iv—La1—Mg1i95.216La1xviii—Mg1—La1xxii62.964
Mg1iv—La1—Mg1ii50.479La1xviii—Mg1—Mg1xiii64.761
Mg1iv—La1—Mg1iii144.903La1xviii—Mg1—Mg1xiv115.239
Mg1iv—La1—Mg1v117.036La1xviii—Mg1—Mg1vii64.761
Mg1iv—La1—Mg1vi117.036La1xviii—Mg1—Mg1xv115.239
Mg1iv—La1—Mg1vii95.216La1xviii—Mg1—Mg1xvi64.761
Mg1iv—La1—Mg1viii95.216La1xviii—Mg1—Mg1xii115.239
Mg1iv—La1—Mg1ix50.479La1xix—Mg1—La1xvii117.036
Mg1iv—La1—Mg1x144.903La1xix—Mg1—La1xviii117.036
Mg1iv—La1—Mg1xi95.216La1xix—Mg1—La1xx62.964
Mg1iv—La1—Mg1xii50.479La1xix—Mg1—La1xxi62.964
Mg1v—La1—Mg1i95.216La1xix—Mg1—La1xxii180
Mg1v—La1—Mg1ii144.903La1xix—Mg1—Mg1xiii64.761
Mg1v—La1—Mg1iii50.479La1xix—Mg1—Mg1xiv115.239
Mg1v—La1—Mg1iv117.036La1xix—Mg1—Mg1vii115.239
Mg1v—La1—Mg1vi117.036La1xix—Mg1—Mg1xv64.761
Mg1v—La1—Mg1vii50.479La1xix—Mg1—Mg1xvi115.239
Mg1v—La1—Mg1viii144.903La1xix—Mg1—Mg1xii64.761
Mg1v—La1—Mg1ix95.216La1xx—Mg1—La1xvii180
Mg1v—La1—Mg1x95.216La1xx—Mg1—La1xviii62.964
Mg1v—La1—Mg1xi50.479La1xx—Mg1—La1xix62.964
Mg1v—La1—Mg1xii95.216La1xx—Mg1—La1xxi117.036
Mg1vi—La1—Mg1i50.479La1xx—Mg1—La1xxii117.036
Mg1vi—La1—Mg1ii95.216La1xx—Mg1—Mg1xiii64.761
Mg1vi—La1—Mg1iii95.216La1xx—Mg1—Mg1xiv115.239
Mg1vi—La1—Mg1iv117.036La1xx—Mg1—Mg1vii64.761
Mg1vi—La1—Mg1v117.036La1xx—Mg1—Mg1xv115.239
Mg1vi—La1—Mg1vii144.903La1xx—Mg1—Mg1xvi115.239
Mg1vi—La1—Mg1viii50.479La1xx—Mg1—Mg1xii64.761
Mg1vi—La1—Mg1ix95.216La1xxi—Mg1—La1xvii62.964
Mg1vi—La1—Mg1x50.479La1xxi—Mg1—La1xviii180
Mg1vi—La1—Mg1xi95.216La1xxi—Mg1—La1xix62.964
Mg1vi—La1—Mg1xii144.903La1xxi—Mg1—La1xx117.036
Mg1vii—La1—Mg1i144.903La1xxi—Mg1—La1xxii117.036
Mg1vii—La1—Mg1ii95.216La1xxi—Mg1—Mg1xiii115.239
Mg1vii—La1—Mg1iii50.479La1xxi—Mg1—Mg1xiv64.761
Mg1vii—La1—Mg1iv95.216La1xxi—Mg1—Mg1vii115.239
Mg1vii—La1—Mg1v50.479La1xxi—Mg1—Mg1xv64.761
Mg1vii—La1—Mg1vi144.903La1xxi—Mg1—Mg1xvi115.239
Mg1vii—La1—Mg1viii117.036La1xxi—Mg1—Mg1xii64.761
Mg1vii—La1—Mg1ix117.036La1xxii—Mg1—La1xvii62.964
Mg1vii—La1—Mg1x95.216La1xxii—Mg1—La1xviii62.964
Mg1vii—La1—Mg1xi95.216La1xxii—Mg1—La1xix180
Mg1vii—La1—Mg1xii50.479La1xxii—Mg1—La1xx117.036
Mg1viii—La1—Mg1i95.216La1xxii—Mg1—La1xxi117.036
Mg1viii—La1—Mg1ii50.479La1xxii—Mg1—Mg1xiii115.239
Mg1viii—La1—Mg1iii95.216La1xxii—Mg1—Mg1xiv64.761
Mg1viii—La1—Mg1iv95.216La1xxii—Mg1—Mg1vii64.761
Mg1viii—La1—Mg1v144.903La1xxii—Mg1—Mg1xv115.239
Mg1viii—La1—Mg1vi50.479La1xxii—Mg1—Mg1xvi64.761
Mg1viii—La1—Mg1vii117.036La1xxii—Mg1—Mg1xii115.239
Mg1viii—La1—Mg1ix117.036Mg1xiii—Mg1—Mg1xiv180
Mg1viii—La1—Mg1x50.479Mg1xiii—Mg1—Mg1vii120
Mg1viii—La1—Mg1xi144.903Mg1xiii—Mg1—Mg1xv60
Mg1viii—La1—Mg1xii95.216Mg1xiii—Mg1—Mg1xvi60
Mg1ix—La1—Mg1i50.479Mg1xiii—Mg1—Mg1xii120
Mg1ix—La1—Mg1ii95.216Mg1xiv—Mg1—Mg1xiii180
Mg1ix—La1—Mg1iii144.903Mg1xiv—Mg1—Mg1vii60
Mg1ix—La1—Mg1iv50.479Mg1xiv—Mg1—Mg1xv120
Mg1ix—La1—Mg1v95.216Mg1xiv—Mg1—Mg1xvi120
Mg1ix—La1—Mg1vi95.216Mg1xiv—Mg1—Mg1xii60
Mg1ix—La1—Mg1vii117.036Mg1vii—Mg1—Mg1xiii120
Mg1ix—La1—Mg1viii117.036Mg1vii—Mg1—Mg1xiv60
Mg1ix—La1—Mg1x144.903Mg1vii—Mg1—Mg1xv180
Mg1ix—La1—Mg1xi50.479Mg1vii—Mg1—Mg1xvi120
Mg1ix—La1—Mg1xii95.216Mg1vii—Mg1—Mg1xii60
Mg1x—La1—Mg1i95.216Mg1xv—Mg1—Mg1xiii60
Mg1x—La1—Mg1ii95.216Mg1xv—Mg1—Mg1xiv120
Mg1x—La1—Mg1iii50.479Mg1xv—Mg1—Mg1vii180
Mg1x—La1—Mg1iv144.903Mg1xv—Mg1—Mg1xvi60
Mg1x—La1—Mg1v95.216Mg1xv—Mg1—Mg1xii120
Mg1x—La1—Mg1vi50.479Mg1xvi—Mg1—Mg1xiii60
Mg1x—La1—Mg1vii95.216Mg1xvi—Mg1—Mg1xiv120
Mg1x—La1—Mg1viii50.479Mg1xvi—Mg1—Mg1vii120
Mg1x—La1—Mg1ix144.903Mg1xvi—Mg1—Mg1xv60
Mg1x—La1—Mg1xi117.036Mg1xvi—Mg1—Mg1xii180
Mg1x—La1—Mg1xii117.036Mg1xii—Mg1—Mg1xiii120
Mg1xi—La1—Mg1i50.479Mg1xii—Mg1—Mg1xiv60
Mg1xi—La1—Mg1ii144.903Mg1xii—Mg1—Mg1vii60
Mg1xi—La1—Mg1iii95.216Mg1xii—Mg1—Mg1xv120
Mg1xi—La1—Mg1iv95.216Mg1xii—Mg1—Mg1xvi180
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) y+1, x+1/4, z+1/4; (v) y+1, x+3/4, z1/4; (vi) y+3/2, x+3/4, z+1/4; (vii) x+1/4, y+5/4, z; (viii) x+3/4, y+5/4, z+1/2; (ix) x+3/4, y+3/4, z; (x) y+1/4, x+1, z+1/4; (xi) y+1/4, x+1/2, z1/4; (xii) y1/4, x+1/2, z+1/4; (xiii) y+1/2, x+1/4, z1/4; (xiv) y+1/2, x+3/4, z+1/4; (xv) x1/4, y+3/4, z; (xvi) y3/4, x+1/2, z1/4; (xvii) x1, y, z; (xviii) x1/2, y, z1/2; (xix) x1/2, y1/2, z; (xx) x+1, y+1, z; (xxi) x+1/2, y+1, z+1/2; (xxii) x+1/2, y+3/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds