organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3S,4S,5R)-Meth­yl 5-cyano-2,3:4,5-di-O-iso­propyl­­idene-2,3,4,5-tetra­hy­droxy­penta­noate

aChemical Crystallography, Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 15 July 2005; accepted 25 July 2005; online 27 July 2005)

The title nitrile, C13H19NO6, a formal oxidation product, was unexpectedly isolated during hydrogenation of an azide precursor in the presence of palladium black.

Comment

The azide group is synthetically important due to its ability to be reduced under a variety of conditions, thus permitting the controlled introduction of an amine functionality (Scriven & Turnbull, 1988[Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297-368.]). Further reagents for the reduction of azides to form amines and amides continue to be discovered (Fazio & Wong, 2003[Fazio, F. & Wong, C.-H. (2003). Tetrahedron Lett. 44, 9083-9085.]); ruthenium(III) has been shown to be an efficient promoter for the formation of amides from azides and thio­acids (Shangguan et al., 2003[Shangguan, N., Katukojvala, S., Greenberg, R. & Williams, L. J. (2003). J. Am. Chem. Soc. 125, 7754-7755.]). Although catalytic hydrogenation is a particularly useful method of azide reduction, often providing excellent yields whilst leaving other sensitive functionalities intact, surprising complications are still discovered; thus catalytic reduction of a series of bicyclic azides (RN3) resulted in the formation of a number of azoamines (RN=N—NH2) arising from simple addition of hydrogen to the terminal nitro­gen of the azide (Beacham et al., 1998[Beacham, A. R., Smelt, K. H., Biggadike, K., Britten, C. J., Hackett, L., Winchester, B. G., Nash, R. J., Griffiths, R. C. & Fleet, G. W. J. (1998). Tetrahedron Lett. 39, 151-154.]). When the azido ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan, the majority of the products were derived from the amino ester (2) (Mayes, Simon et al., 2004[Mayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157-162.]; Mayes, Stetz, Watterson et al., 2004[Mayes, B. A., Stetz, R. J. E., Watterson, M. P., Edwards, A. A., Ansell, C. W. G., Tranter, G. E. & Fleet, G. W. J. (2004). Tetrahedron Asymmetry, 15, 627-638.]; Mayes, Stetz, Ansell & Fleet, 2004[Mayes, B. A., Stetz, R. J. E., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 153-156.]). However, significant amounts of the nitrile (3) were also formed during the reduction; this is unexpected, since the formation of the nitrile appears to be a formal oxidation occurring under reducing conditions. Although previous examples of the catalytic decomposition of primary azides to nitriles have been reported (Hayashi et al., 1976[Hayashi, H., Ohno, A. & Oka, S. (1976). Bull. Chem. Soc. Jpn, 49, 506-509.]; Kappe, 1990[Kappe, C. O. (1990). Liebigs Ann. Chem. pp. 505-507.]; Kotsuki et al., 1997[Kotsuki, H., Ohishi, T. & Araki, T. (1997). Tetrahedron Lett. 38, 2129-2132.]), this is the first example of the formation of a nitrile being formed under hydrogenation conditions. The structure of the unexpected product (3), including the relative configuration at C-5 (atom C13) bearing the nitrile, was firmly established by X-ray crystallographic analysis (Fig. 1[link]); the absolute configuration arises from the use of D-galactose as the original starting material.

[Scheme 1]

The crystal structure of (3) is unexceptional, consisting of layers of mol­ecules lying parallel to the ab plane (Fig. 2[link]). One face of the layer is relatively flat and consists of nitrile and meth­yl groups facing an identical face of the next layer. The other face of the layer is pleated, with the meth­yl carboxyl­ate groups of one layer inter­leaving with the corresponding groups on the adjacent face. There are no unexpectedly short O-meth­yl or N-meth­yl contacts.

[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
Packing diagram of (3), viewed along the b axis.

Experimental

The azide ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan (Mayes, Simon et al., 2004[Mayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157-162.]) and the title material crystallized from eth­yl acetate/hexa­ne.

Crystal data
  • C13H19NO6

  • Mr = 285.30

  • Monoclinic, P 21

  • a = 10.4312 (3) Å

  • b = 5.4469 (1) Å

  • c = 13.0536 (5) Å

  • β = 93.4825 (10)°

  • V = 740.31 (4) Å3

  • Z = 2

  • Dx = 1.280 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1417 reflections

  • θ = 3–27°

  • μ = 0.10 mm−1

  • T = 190 K

  • Block, colourless

  • 0.80 × 0.50 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.87, Tmax = 0.97

  • 4978 measured reflections

  • 1848 independent reflections

  • 1848 reflections with I > −3σ(I)

  • Rint = 0.020

  • θmax = 27.5°

  • h = −13 → 13

  • k = −6 → 7

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 0.99

  • 1848 reflections

  • 182 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.15P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

  • Extinction correction: Larson (1970), equation 22

  • Extinction coefficient: 1.6 (3) × 102

Table 1
Selected geometric parameters (Å, °)[link]

C1—O2 1.456 (2)
O2—C3 1.3378 (18)
C3—O4 1.1996 (19)
C3—C5 1.521 (2)
C5—O6 1.4178 (18)
C5—C11 1.523 (2)
O6—C7 1.438 (2)
C7—C8 1.516 (2)
C7—C9 1.510 (2)
C7—O10 1.4461 (19)
O10—C11 1.4222 (18)
C11—C12 1.530 (2)
C12—C13 1.522 (2)
C12—O20 1.4235 (19)
C13—C14 1.490 (2)
C13—O16 1.420 (2)
C14—N15 1.136 (2)
O16—C17 1.443 (2)
C17—C18 1.513 (2)
C17—C19 1.510 (2)
C17—O20 1.439 (2)
C1—O2—C3 115.80 (12)
O2—C3—O4 123.87 (15)
O2—C3—C5 110.05 (12)
O4—C3—C5 126.05 (14)
C3—C5—O6 112.57 (12)
C3—C5—C11 113.63 (13)
O6—C5—C11 103.27 (12)
C5—O6—C7 109.03 (12)
O6—C7—C8 110.98 (15)
O6—C7—C9 108.91 (15)
C8—C7—C9 112.88 (15)
O6—C7—O10 105.41 (13)
C8—C7—O10 108.12 (13)
C9—C7—O10 110.29 (13)
C7—O10—C11 109.36 (12)
C5—C11—O10 103.10 (11)
C5—C11—C12 111.47 (12)
O10—C11—C12 110.98 (12)
C11—C12—C13 111.06 (12)
C11—C12—O20 110.43 (12)
C13—C12—O20 102.95 (11)
C12—C13—C14 112.31 (15)
C12—C13—O16 103.07 (13)
C14—C13—O16 111.41 (13)
C13—C14—N15 179.74 (19)
C13—O16—C17 107.76 (13)
O16—C17—C18 111.13 (16)
O16—C17—C19 108.22 (16)
C18—C17—C19 113.72 (16)
O16—C17—O20 104.95 (13)
C18—C17—O20 108.84 (14)
C19—C17—O20 109.61 (14)
C17—O20—C12 110.26 (12)

In the absence of significant anomalous scattering, Friedel pairs were merged, and the absolute configuration is arbitrarily assigned. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.11) reflect changes in the illuminated volume of the crystal. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å) and displacement parameters [Uiso(H) = 1.2–1.5Ueq(parent atom)], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The azide group is synthetically important due to its ability to be reduced under a variety of conditions, thus permitting the controlled introduction of an amine functionality (Scriven & Turnbull, 1988). Further reagents for the reduction of azides to form amines and amides continue to be discovered (Fazio & Wong, 2003); ruthenium(III) has been shown to be an efficient promoter for the formation of amides from azides and thioacids (Shangguan et al., 2003). Although catalytic hydrogenation is a particularly useful method of azide reduction, often providing excellent yields whilst leaving other sensitive functionalities intact, surprising complications are still discovered; thus catalytic reduction of a series of bicyclic azides (RN3) resulted in the formation of a number of azoamines (RNN—NH2) arising from simple addition of hydrogen to the terminal nitrogen of the azide (Beacham et al., 1998). When the azido ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan, the majority of the products were derived from the amino ester (2) (Mayes, Simon et al., 2004; Mayes, Stetz, Watterson et al., 2004; Mayes, Stetz, Ansell & Fleet, 2004). However, significant amounts of the nitrile (3) were also formed during the reduction; this is unexpected, since the formation of the nitrile appears to be a formal oxidation occurring under reducing conditions. Although previous examples of the catalytic decomposition of primary azides to nitriles have been reported (Hayashi et al., 1976; Kappe, 1990; Kotsuki et al., 1997), this is the first example of the formation of a nitrile being formed under hydrogenation conditions. The structure of the unexpected product (3), including the relative configuration at C13 bearing the nitrile, was firmly established by X-ray crystallographic analysis (Fig. 1); the absolute configuration arises from the use of D-galactose as the original starting material.

The crystal structure of (3) is unexceptional, consisting of layers of molecules lying parallel to the ab plane (Fig. 2). One face of the layer is relatively flat and consists of nitrile and methyl groups facing an identical face of the next layer. The other face of the layer is pleated, with the methyl carboxylate groups of one layer interleaving with the corresponding groups on the adjacent face. There are no unexpectedly short O-methyl or N-methyl contacts.

Experimental top

The azide ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan (Mayes et al., 2004) and the title material crystallized from ethyl acetate/hexane.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged, and the absolute configuration is arbitrarily assigned. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.11) reflect changes in the illuminated volume of the crystal. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å) and displacement parameters [Uiso(H) = 1.2–1.5Ueq(parent atom)], after which they were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Packing diagram of (3), viewed along the b axis.
(2R,3S,4S,5R)-Methyl 5-cyano-2,3:4,5-di-O-isopropylidene-2,3,4,5- tetrahydroxypentanoate top
Crystal data top
C13H19NO6F(000) = 304
Mr = 285.30Dx = 1.280 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.4312 (3) ÅCell parameters from 1417 reflections
b = 5.4469 (1) Åθ = 3–27°
c = 13.0536 (5) ŵ = 0.10 mm1
β = 93.4825 (10)°T = 190 K
V = 740.31 (4) Å3Block, colourless
Z = 20.80 × 0.50 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
1848 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 4.7°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.87, Tmax = 0.97k = 67
4978 measured reflectionsl = 1616
1848 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(F2) + ( 0.03P)2 + 0.15P]
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.069(Δ/σ)max = 0.000365
S = 0.99Δρmax = 0.18 e Å3
1848 reflectionsΔρmin = 0.15 e Å3
182 parametersExtinction correction: Larson 1970 Crystallographic Computing eq 22
1 restraintExtinction coefficient: 160 (30)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H19NO6V = 740.31 (4) Å3
Mr = 285.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4312 (3) ŵ = 0.10 mm1
b = 5.4469 (1) ÅT = 190 K
c = 13.0536 (5) Å0.80 × 0.50 × 0.30 mm
β = 93.4825 (10)°
Data collection top
Nonius KappaCCD
diffractometer
1848 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1848 reflections with I > 3σ(I)
Tmin = 0.87, Tmax = 0.97Rint = 0.020
4978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.069H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
1848 reflectionsΔρmin = 0.15 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65764 (17)0.6699 (5)1.04143 (13)0.0426
O20.71146 (10)0.6530 (3)0.94132 (9)0.0372
C30.62621 (14)0.6379 (3)0.86076 (12)0.0272
O40.51203 (10)0.6423 (3)0.86742 (9)0.0389
C50.69562 (14)0.6225 (3)0.76183 (11)0.0250
O60.61174 (11)0.5653 (2)0.67559 (9)0.0284
C70.61457 (16)0.3048 (3)0.65796 (13)0.0275
C80.49552 (15)0.1822 (4)0.69526 (14)0.0354
C90.63211 (18)0.2588 (4)0.54558 (13)0.0396
O100.72462 (10)0.2156 (2)0.71971 (9)0.0296
C110.79554 (14)0.4185 (3)0.76192 (12)0.0240
C120.90623 (14)0.4853 (3)0.69547 (12)0.0249
C131.00643 (15)0.2819 (3)0.69727 (13)0.0289
C141.07823 (16)0.2771 (4)0.60205 (14)0.0384
N151.13337 (18)0.2738 (4)0.52965 (14)0.0613
O161.08841 (12)0.3413 (2)0.78462 (9)0.0320
C171.09141 (16)0.6051 (3)0.79421 (13)0.0291
C181.20660 (15)0.7121 (4)0.74499 (14)0.0371
C191.0856 (2)0.6692 (5)0.90635 (14)0.0486
O200.97635 (10)0.6886 (2)0.73847 (9)0.0317
H110.73010.68791.09160.0619*
H120.60970.52011.05350.0644*
H130.60050.80961.04340.0632*
H510.73440.78260.75210.0275*
H810.50340.00850.68460.0524*
H820.48770.21680.76920.0517*
H830.42250.24990.65490.0524*
H910.65040.08700.53510.0585*
H920.70510.35640.52500.0583*
H930.55360.30260.50390.0582*
H1110.82780.37700.83100.0273*
H1210.87470.52790.62670.0290*
H1310.96800.12420.70650.0337*
H1811.20340.89350.75230.0530*
H1821.28280.65400.77930.0551*
H1831.20580.67140.67340.0540*
H1911.08040.84690.91300.0725*
H1921.16230.61000.94260.0726*
H1931.00810.59240.93060.0724*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (9)0.0557 (12)0.0331 (8)0.0046 (10)0.0010 (7)0.0069 (10)
O20.0275 (5)0.0516 (8)0.0322 (6)0.0015 (6)0.0013 (4)0.0073 (6)
C30.0267 (7)0.0211 (8)0.0336 (8)0.0008 (7)0.0005 (6)0.0007 (7)
O40.0250 (5)0.0508 (8)0.0408 (6)0.0015 (6)0.0026 (5)0.0050 (7)
C50.0230 (7)0.0199 (8)0.0318 (8)0.0001 (6)0.0009 (6)0.0025 (7)
O60.0312 (6)0.0210 (6)0.0322 (6)0.0029 (5)0.0045 (5)0.0017 (5)
C70.0261 (8)0.0215 (8)0.0346 (8)0.0015 (6)0.0016 (6)0.0014 (7)
C80.0285 (7)0.0304 (9)0.0473 (10)0.0042 (8)0.0022 (7)0.0009 (8)
C90.0445 (10)0.0384 (10)0.0357 (9)0.0002 (9)0.0008 (7)0.0034 (8)
O100.0265 (5)0.0184 (6)0.0431 (6)0.0008 (5)0.0050 (5)0.0031 (5)
C110.0243 (7)0.0188 (7)0.0288 (7)0.0002 (6)0.0000 (6)0.0030 (6)
C120.0251 (7)0.0200 (8)0.0296 (7)0.0011 (6)0.0018 (6)0.0025 (6)
C130.0248 (7)0.0244 (8)0.0376 (8)0.0005 (7)0.0014 (6)0.0035 (7)
C140.0315 (8)0.0381 (11)0.0455 (10)0.0015 (8)0.0024 (7)0.0165 (9)
N150.0566 (10)0.0740 (15)0.0553 (11)0.0094 (11)0.0200 (9)0.0304 (11)
O160.0331 (6)0.0235 (6)0.0385 (7)0.0049 (5)0.0052 (5)0.0002 (5)
C170.0284 (8)0.0234 (8)0.0352 (8)0.0021 (6)0.0006 (7)0.0018 (7)
C180.0252 (7)0.0365 (10)0.0491 (10)0.0020 (8)0.0008 (7)0.0053 (8)
C190.0621 (12)0.0453 (12)0.0385 (10)0.0004 (11)0.0035 (9)0.0087 (10)
O200.0234 (5)0.0189 (6)0.0525 (7)0.0002 (5)0.0003 (5)0.0012 (5)
Geometric parameters (Å, º) top
C1—O21.456 (2)O10—C111.4222 (18)
C1—H110.975C11—C121.530 (2)
C1—H120.975C11—H1110.970
C1—H130.968C12—C131.522 (2)
O2—C31.3378 (18)C12—O201.4235 (19)
C3—O41.1996 (19)C12—H1210.965
C3—C51.521 (2)C13—C141.490 (2)
C5—O61.4178 (18)C13—O161.420 (2)
C5—C111.523 (2)C13—H1310.958
C5—H510.973C14—N151.136 (2)
O6—C71.438 (2)O16—C171.443 (2)
C7—C81.516 (2)C17—C181.513 (2)
C7—C91.510 (2)C17—C191.510 (2)
C7—O101.4461 (19)C17—O201.439 (2)
C8—H810.961C18—H1810.993
C8—H820.992C18—H1820.943
C8—H830.972C18—H1830.960
C9—H910.966C19—H1910.974
C9—H920.980C19—H1920.960
C9—H930.985C19—H1930.980
O2—C1—H11106.5O10—C11—C12110.98 (12)
O2—C1—H12108.7C5—C11—H111111.7
H11—C1—H12111.2O10—C11—H111108.8
O2—C1—H13110.2C12—C11—H111110.6
H11—C1—H13110.9C11—C12—C13111.06 (12)
H12—C1—H13109.3C11—C12—O20110.43 (12)
C1—O2—C3115.80 (12)C13—C12—O20102.95 (11)
O2—C3—O4123.87 (15)C11—C12—H121111.0
O2—C3—C5110.05 (12)C13—C12—H121112.6
O4—C3—C5126.05 (14)O20—C12—H121108.5
C3—C5—O6112.57 (12)C12—C13—C14112.31 (15)
C3—C5—C11113.63 (13)C12—C13—O16103.07 (13)
O6—C5—C11103.27 (12)C14—C13—O16111.41 (13)
C3—C5—H51106.5C12—C13—H131111.2
O6—C5—H51109.5C14—C13—H131108.9
C11—C5—H51111.3O16—C13—H131109.8
C5—O6—C7109.03 (12)C13—C14—N15179.74 (19)
O6—C7—C8110.98 (15)C13—O16—C17107.76 (13)
O6—C7—C9108.91 (15)O16—C17—C18111.13 (16)
C8—C7—C9112.88 (15)O16—C17—C19108.22 (16)
O6—C7—O10105.41 (13)C18—C17—C19113.72 (16)
C8—C7—O10108.12 (13)O16—C17—O20104.95 (13)
C9—C7—O10110.29 (13)C18—C17—O20108.84 (14)
C7—C8—H81107.9C19—C17—O20109.61 (14)
C7—C8—H82110.2C17—C18—H181108.1
H81—C8—H82110.0C17—C18—H182109.7
C7—C8—H83106.8H181—C18—H182108.7
H81—C8—H83111.5C17—C18—H183111.3
H82—C8—H83110.3H181—C18—H183109.0
C7—C9—H91109.5H182—C18—H183110.0
C7—C9—H92108.5C17—C19—H191108.8
H91—C9—H92108.9C17—C19—H192108.5
C7—C9—H93110.5H191—C19—H192109.9
H91—C9—H93108.8C17—C19—H193107.3
H92—C9—H93110.6H191—C19—H193110.1
C7—O10—C11109.36 (12)H192—C19—H193112.1
C5—C11—O10103.10 (11)C17—O20—C12110.26 (12)
C5—C11—C12111.47 (12)

Experimental details

Crystal data
Chemical formulaC13H19NO6
Mr285.30
Crystal system, space groupMonoclinic, P21
Temperature (K)190
a, b, c (Å)10.4312 (3), 5.4469 (1), 13.0536 (5)
β (°) 93.4825 (10)
V3)740.31 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.80 × 0.50 × 0.30
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.87, 0.97
No. of measured, independent and
observed [I > 3σ(I)] reflections
4978, 1848, 1848
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 0.99
No. of reflections1848
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
C1—O21.456 (2)C11—C121.530 (2)
O2—C31.3378 (18)C12—C131.522 (2)
C3—O41.1996 (19)C12—O201.4235 (19)
C3—C51.521 (2)C13—C141.490 (2)
C5—O61.4178 (18)C13—O161.420 (2)
C5—C111.523 (2)C14—N151.136 (2)
O6—C71.438 (2)O16—C171.443 (2)
C7—C81.516 (2)C17—C181.513 (2)
C7—C91.510 (2)C17—C191.510 (2)
C7—O101.4461 (19)C17—O201.439 (2)
O10—C111.4222 (18)
C1—O2—C3115.80 (12)O10—C11—C12110.98 (12)
O2—C3—O4123.87 (15)C11—C12—C13111.06 (12)
O2—C3—C5110.05 (12)C11—C12—O20110.43 (12)
O4—C3—C5126.05 (14)C13—C12—O20102.95 (11)
C3—C5—O6112.57 (12)C12—C13—C14112.31 (15)
C3—C5—C11113.63 (13)C12—C13—O16103.07 (13)
O6—C5—C11103.27 (12)C14—C13—O16111.41 (13)
C5—O6—C7109.03 (12)C13—C14—N15179.74 (19)
O6—C7—C8110.98 (15)C13—O16—C17107.76 (13)
O6—C7—C9108.91 (15)O16—C17—C18111.13 (16)
C8—C7—C9112.88 (15)O16—C17—C19108.22 (16)
O6—C7—O10105.41 (13)C18—C17—C19113.72 (16)
C8—C7—O10108.12 (13)O16—C17—O20104.95 (13)
C9—C7—O10110.29 (13)C18—C17—O20108.84 (14)
C7—O10—C11109.36 (12)C19—C17—O20109.61 (14)
C5—C11—O10103.10 (11)C17—O20—C12110.26 (12)
C5—C11—C12111.47 (12)
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals
First citationBeacham, A. R., Smelt, K. H., Biggadike, K., Britten, C. J., Hackett, L., Winchester, B. G., Nash, R. J., Griffiths, R. C. & Fleet, G. W. J. (1998). Tetrahedron Lett. 39, 151–154. Web of Science CrossRef CAS
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals
First citationFazio, F. & Wong, C.-H. (2003). Tetrahedron Lett. 44, 9083–9085. Web of Science CrossRef CAS
First citationHayashi, H., Ohno, A. & Oka, S. (1976). Bull. Chem. Soc. Jpn, 49, 506–509. CrossRef CAS
First citationKappe, C. O. (1990). Liebigs Ann. Chem. pp. 505–507. CrossRef
First citationKotsuki, H., Ohishi, T. & Araki, T. (1997). Tetrahedron Lett. 38, 2129–2132. CrossRef CAS Web of Science
First citationMayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157–162. Web of Science CSD CrossRef CAS
First citationMayes, B. A., Stetz, R. J. E., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 153–156. Web of Science CrossRef CAS
First citationMayes, B. A., Stetz, R. J. E., Watterson, M. P., Edwards, A. A., Ansell, C. W. G., Tranter, G. E. & Fleet, G. W. J. (2004). Tetrahedron Asymmetry, 15, 627–638. Web of Science CrossRef CAS
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationScriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368. CrossRef CAS Web of Science
First citationShangguan, N., Katukojvala, S., Greenberg, R. & Williams, L. J. (2003). J. Am. Chem. Soc. 125, 7754–7755. Web of Science CrossRef PubMed CAS
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds