[Journal logo]

Volume 61 
Part 8 
Pages m1628-m1632  
August 2005  

Received 11 July 2005
Accepted 21 July 2005
Online 27 July 2005

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.003 Å
R = 0.025
wR = 0.068
Data-to-parameter ratio = 15.4
Details

[Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}·2H2O [H4pmida is N-(phosphonomethyl)iminodiacetic acid]: the first two-dimensional hybrid framework containing [V2O2(pmida)2]4- building blocks

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal,bDepartment of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland, and cDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
Correspondence e-mail: fpaz@dq.ua.pt

The crystal structure of the title compound, polymeric hexaaquacobalt(II) diaquadioxodi-[mu]2-pyrazine-bis[[mu]3-N-(phosphonomethyl)iminodiacetato]cobalt(II)divanadate(IV) dihydrate, {[Co(H2O)6][CoV2(C3H4O8P)2(C4H4N2)2(H2O)2]·2H2O}n, is the first example of a two-dimensional hybrid framework containing centrosymmetric dimeric [V2O2(pmida)2]4- anionic units [H4pmida is N-(phosphonomethyl)iminodiacetic acid]. The structure contains two crystallographically unique cobalt(II) centres, both located at inversion centres and exhibiting Jahn-Teller-distorted octahedral coordination geometries. One Co2+ cation establishes physical links between adjacent [V2O2(pmida)2]4- anionic units, forming one-dimensional anionic ribbons which run along the [010] direction, {[Co(H2O)2][V2O2(pmida)2]}n2n-. Pyrazine ligands, with their centroids located at inversion centres, bridge the above-mentioned Co2+ centres, forming {[Co(H2O)2][V2O2(pmida)2]}n2n- anionic layers which alternate along the [001] direction with [Co(H2O)6]2+ cations and the water molecules of crystallization. An extensive and highly directional hydrogen-bonded network interconnects the structural components.

Comment

The design of coordination-based materials in which the topology is extended from zero-dimensional (i.e. discrete complexes) into one-, two- or three-dimensional, is a topical and interesting field of research. Since the seminal paper by Hoskins & Robson (1990[Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554.]), where diamondoid-type hybrid frameworks were engineered based upon the simple structures of cadmium and zinc cyanides, the field has expanded rapidly. This was motivated by the unusual architectures and the potential applications of such frameworks (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461-1494.]; Janiak, 2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]; Mori et al., 2004[Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31-46.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Rowsell & Yaghi, 2004[Rowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3-14.]). In order to control, at least partially, the occurrence of `supramolecular isomerism' (Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]), these hydrid crystalline materials are now being constructed using a typical modular approach: rigid and highly robust coordination-based cores are used as secondary building units (SBUs) for the construction of multidimensional metal-organic frameworks (MOFs) (Yaghi et al., 1998[Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

During the course of our work on crystalline organic-inorganic hybrid materials (Paz et al., 2002[Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.], 2002a[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002a). Acta Cryst. C58, m608-m610.],b[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002b). Acta Cryst. E58, m691-m693.],c[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002c). Acta Cryst. E58, m730-m732.]; Paz & Klinowski, 2003[Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484-1485.], 2004a[Paz, F. A. A. & Klinowski, J. (2004a). J. Solid State Chem. 177, 3423-3432.],b[Paz, F. A. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3882-2893.],c[Paz, F. A. A. & Klinowski, J. (2004c). Inorg. Chem. 43, 3948-3954.]; Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]), we came across N-(phosphonomethyl)iminodiacetic acid (H4pmida), an organic molecule which, despite possessing several types of chelating functional groups, is relatively unexplored in the construction of MOFs (Fan et al., 2004[Fan, Y., Li, G. H., Shi., Z., Zhang, D., Xu, J. N., Song, T. Y. & Feng, S. H. (2004). J. Solid State Chem. 177, 4346-4350.]; Gutschke et al., 1999[Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088-1090.]; Mao et al., 2002[Mao, J. G., Wang, Z. K. & Clearfield, A. (2002). Inorg. Chem. 41, 6106-6111.]; Pei et al., 2004[Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207-210.]; Song et al., 2004[Song, J. L., Prosvirin, A. V., Zhao, H. H. & Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 3706-3711.]), as confirmed by a search in the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Allen & Motherwell, 2002[Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.]). This molecule forms with V4+ centres centrosymmetric dimeric [V2O2(pmida)2]4- anionic units, as originally reported by Crans et al. (1998[Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655.]); this anionic dimer is a rather convenient SBU owing, on the one hand, to its predictable self-assembly in aqueous media (particularly when hydrothermal synthetic approaches are employed) and, on the other, to the several terminal O atoms which can bound to a large variety of metal centres through various coordination modes. We recently reported the first three-dimensional frameworks containing [V2O2(pmida)2]4- anionic units, through their combination with transition metal centres (namely, Cd2+ and Co2+) and the bridging 4,4'-bipyridine organic ligand (Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]). We report here the first two-dimensional framework containing these anionic units: [Co(H2O)6]{[Co(pyr)(H2O)2][V2O2(pmida)2]}·2(H2O), (I)[link] (where pyr is pyrazine).

[Scheme 1]

The title compound, (I)[link], crystallizes in the triclinic space group P[\overline{1}], with all its primary building blocks having inversion symmetry: the [V2O2(pmida)2]4- anionic unit has its centroid located at the inversion centre ([{1\over 2}], 0, 0); both Co1 and Co2 are themselves located at inversion centres, with the former positioned in the middle of the ab plane, at ([{1\over 2}], [{1\over 2}], 0), and the latter in the centre of the unit cell, at ([{1\over 2}], [{1\over 2}], [{1\over 2}]); the pyrazine bridging organic ligand, as for the [V2O2(pmida)2]4- anionic unit, is also centrosymmetric, with its centroid located at (0, [1\over2], 0).

The geometry of the [V2O2(pmida)2]4- anionic unit is very similar to that previously reported for related compounds (Crans et al., 1998[Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655.]; Paz, Shi et al., 2004[Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.]), with the pmida4- anionic ligands encapsulating the V4+ centres inside three five-membered chelate rings (average bite angle of ca 77°, Table 1[link]). The coordination polyhedron of these metal centres resembles a highly distorted octahedron, {VNO5}, with the oxo group [V=O = 1.593 (2) Å] markedly showing its trans influence in the rather long V-N distance [2.354 (2) Å]. The phosphonate groups establish the physical bridges between adjacent V4+ centres (Fig. 1[link]a), leading to a V1...V1v distance of 5.149 (2) Å [symmetry code: (v) 1 - x, -y, 1 - z].

Both cobalt(II) centres adopt Jahn-Teller-distorted octahedral cooordination geometries, as depicted in Fig. 1[link] and Table 1[link]. For Co1, the equatorial plane is formed by two water molecules plus two O-donor atoms from phosphonate groups (Fig. 1[link]a), with an average Co-O distance of ca 2.07 Å; pyr ligands, axially coordinated, complete the coordination, with Co-N bond lengths of 2.218 (2) Å (Table 1[link]). Co2 is coordinated only by water molecules, with O3W and O4W forming the equatorial plane (the average Co-O bond length is 2.06 Å) and O2W located 2.144 (2) Å from the metal centre. The cis octahedral angles are within the ranges 88.04 (6)-91.96 (6) and 87.84 (6)-92.16 (6)° for Co1 and Co2, respectively (Table 1[link]).

The centrosymmetric [V2O2(pmida)2]4- anionic unit is bound to two adjacent Co1 metal centres via the trans-uncoordinated P-O bonds, imposing a Co1...Co1viii separation of 10.140 (2) Å [symmetry code: (viii) x, -1 + y, z] (Fig. 1[link]a). The repetition of this bridging motif leads to the formation of a one-dimensional anionic ribbon (running along the [010] direction), {[Co(H2O)2][V2O2(pmida)2]}n2n-, as depicted in Fig. 2[link](a). Centrosymmetric bridging pyr ligands are axially coordinated to these Co1 centres (Fig. 2[link]b), establishing physical connections between adjacent ribbons and further imposing a Co1...Co1vii separation of 7.220 (1) Å [symmetry code: (vii) 1 + x, y, z]. Such an arrangement leads to the formation of a decorated two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- anionic layer with distances between Co1 atoms defined by the a- and b-axis lengths. The charge of this layer is compensated by the presence of hexaaquacobalt(II) cations, [Co(H2O)6]2+ (Fig. 1[link]b), which also act as space-filling groups, located in the available spaces resulting from the parallel packing, along the [001] direction, of individual anionic layers (Fig. 3[link]). Each {[Co(H2O)2][V2O2(pmida)2]}n2n- layer is further interconnected to the [Co(H2O)6]2+ cations via a series of very strong and highly directional hydrogen-bond interactions, also involving the water molecules of crystallization (Fig. 4[link] and Table 2[link]).

[Figure 1]
Figure 1
Schematic representation of (a) a portion of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layer and (b) the interlayer [Co(H2O)6]2+ cations, showing the labelling scheme for selected atoms in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Schematic representation of the construction of the anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layers, which lie in the ab plane of the unit cell.
[Figure 3]
Figure 3
Alternation along the [001] direction of anionic two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n- layers (in green and orange), which are intercalated by [Co(H2O)6]2+ cations (in grey). H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Perspective view of the crystal packing of the title compound, viewed along the (a) [100] and (b) [010] directions of the unit cell. Hydrogen bonds are represented as green dashed bonds and H atoms have been omitted for clarity.

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, 97% Fluka), pyrazine (98% Fluka), vanadium(IV) oxide sulfate pentahydrate (99% Sigma-Aldrich) and cobalt acetate tetrahydrate (99.0% Fluka). Syntheses were typically carried out in PTFE-lined stainless steel reaction vessels (ca 40 cm3), under autogenous pressure and static conditions in a preheated oven at 373 K. Reactions took place over a period of 4 d, after which the vessels were removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable, and insoluble in water and common organic solvents such as methanol, ethanol, acetone, dichloromethane, toluene, dimethyl sulfoxide and chloroform. The title compound was synthesized from a mixture containing VOSO4·5H2O (0.40 g), CoC4H6O4·4H2O (0.34 g), H4pmida (0.27 g), pyrazine (0.10 g) and NaOH (0.20 g) in distilled water (ca 10 g). The mixture was stirred at ambient temperature for 30 min, yielding a suspension with a molar composition of 2.1:1.2:1.0:1.1:4.2:467, which was transferred to the reaction vessel. After the reaction, a large quantity of light-blue single crystals of the title compound were isolated by vacuum filtration, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature.

Crystal data
  • C14H20CoN4O18P2V2·CoH12O6·2H2O

  • Mr = 958.15

  • Triclinic, [P \overline 1]

  • a = 7.2200 (14) Å

  • b = 10.140 (2) Å

  • c = 12.080 (2) Å

  • [alpha] = 93.79 (3)°

  • [beta] = 103.21 (3)°

  • [gamma] = 104.21 (3)°

  • V = 827.6 (3) Å3

  • Z = 1

  • Dx = 1.922 Mg m-3

  • Mo K[alpha] radiation

  • Cell parameters from 5000 reflections

  • [theta] = 2-22.5°

  • [mu] = 1.73 mm-1

  • T = 298 (2) K

  • Prism, blue

  • 0.44 × 0.33 × 0.14 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • [omega] scans

  • Absorption correction: numerical(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.354, Tmax = 0.724

  • 14552 measured reflections

  • 3994 independent reflections

  • 3510 reflections with I > 2[sigma](I)

  • Rint = 0.033

  • [theta]max = 28.8°

  • h = -9 [rightwards arrow] 9

  • k = -13 [rightwards arrow] 13

  • l = -16 [rightwards arrow] 16

Refinement
  • Refinement on F2

  • R[F2 > 2[sigma](F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.08

  • 3994 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[[sigma]2(Fo2) + (0.0369P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3

  • ([Delta]/[sigma])max = 0.001

  • [Delta][rho]max = 0.62 e Å-3

  • [Delta][rho]min = -0.46 e Å-3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0134 (13)

Table 1
Selected geometric parameters (Å, °)[link]

Co1-O1i 2.044 (2)
Co1-O1W 2.093 (2)
Co1-N2 2.218 (2)
Co2-O2W 2.144 (2)
Co2-O3W 2.063 (2)
Co2-O4W 2.061 (2)
V1-O2ii 1.996 (2)
V1-O3 1.957 (2)
V1-O4 2.041 (2)
V1-O6 2.030 (2)
V1-O8 1.593 (2)
V1-N1 2.354 (2)
O1-P1 1.508 (2)
O2-P1 1.534 (2)
O3-P1 1.529 (2)
O1-Co1 2.044 (2)
P1-C1 1.829 (2)
O1-Co1-O1Wi 89.40 (6)
O1-Co1-O1W 90.60 (6)
O1i-Co1-N2 91.96 (6)
O1-Co1-N2 88.04 (6)
O1Wi-Co1-N2 88.11 (7)
O1W-Co1-N2 91.89 (7)
O3W-Co2-O2W 88.56 (6)
O3W-Co2-O2Wiii 91.44 (6)
O4W-Co2-O2Wiii 87.84 (6)
O4W-Co2-O2W 92.16 (6)
O4W-Co2-O3Wiii 91.43 (7)
O4W-Co2-O3W 88.57 (7)
O2ii-V1-O4 165.00 (5)
O2ii-V1-O6 84.32 (6)
O2ii-V1-N1 89.08 (6)
O3-V1-O2ii 91.38 (6)
O3-V1-O4 90.11 (6)
O3-V1-O6 154.21 (5)
O3-V1-N1 80.43 (6)
O4-V1-N1 76.45 (6)
O6-V1-O4 87.87 (6)
O6-V1-N1 74.10 (5)
O8-V1-O2ii 100.68 (8)
O8-V1-O3 105.45 (7)
O8-V1-O4 93.29 (8)
O8-V1-O6 100.33 (7)
O8-V1-N1 168.34 (7)
O1-P1-O3 112.77 (8)
O1-P1-O2 111.06 (7)
O3-P1-O2 110.17 (7)
O1-P1-C1 110.75 (8)
O3-P1-C1 104.04 (7)
O2-P1-C1 107.73 (8)
P1-O1-Co1 136.12 (7)
P1-O3-V1 126.89 (7)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)[link]

D-H...A D-H H...A D...A D-H...A
O1W-H1C...O2i 0.84 (2) 1.98 (1) 2.7489 (19) 154 (2)
O1W-H1D...O2W 0.84 (2) 2.09 (1) 2.878 (2) 160 (3)
O2W-H2C...O5 0.84 (2) 2.00 (1) 2.798 (2) 159 (2)
O2W-H2D...O7iv 0.84 (2) 1.93 (1) 2.736 (2) 166 (2)
O3W-H3A...O5 0.84 (2) 1.87 (1) 2.672 (2) 159 (2)
O3W-H3B...O6v 0.84 (2) 1.95 (2) 2.7801 (18) 173 (2)
O4W-H4C...O5Wiii 0.84 (2) 1.86 (1) 2.698 (2) 175 (3)
O4W-H4D...O7vi 0.84 (2) 1.86 (1) 2.689 (2) 167 (2)
O5W-H5B...O4 0.84 (2) 2.14 (2) 2.893 (2) 151 (3)
O5W-H5A...O5vii 0.84 (2) 2.54 (2) 3.311 (3) 157 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) -x, -y, -z+1; (vii) x+1, y, z.

Non-H atoms were located from difference Fourier maps calculated in successive least-squares refinement cycles. The C-bound H atoms were placed in idealized positions and refined as riding with C-H = 0.93-0.97 Å and Uiso = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps, and refined with the O-H and H...H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure chemically reasonable geometry, with Uiso fixed at 1.5Ueq(O).

Data collection: CrysAlis CCD (Kuma, 1999[Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Kuma, 1999[Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Acknowledgements

We are grateful to FEDER, POCTI (Portugal), InTerreg IIIB and to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support and the postdoctoral and PhD research grants Nos. SFRH/BPD/9309/2002 (to FNS) and SFRH/BD/13858/2003 (to LM).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388. [details]
Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422. [details]
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. [details]
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461-1494. [ISI] [CrossRef] [ChemPort]
Brandenburg, K. (2001). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645-6655. [ISI] [CrossRef] [PubMed] [ChemPort]
Fan, Y., Li, G. H., Shi., Z., Zhang, D., Xu, J. N., Song, T. Y. & Feng, S. H. (2004). J. Solid State Chem. 177, 4346-4350.
Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088-1090. [CrossRef] [ChemPort]
Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546-1554. [CrossRef] [ChemPort] [ISI]
Janiak, C. (2003). Dalton Trans. pp. 2781-2804. [CrossRef]
Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wroclaw, Poland.
Mao, J. G., Wang, Z. K. & Clearfield, A. (2002). Inorg. Chem. 41, 6106-6111. [CrossRef] [PubMed] [ChemPort]
Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31-46. [ISI] [CSD] [CrossRef] [ChemPort]
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658. [ISI] [CrossRef] [PubMed] [ChemPort]
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002a). Acta Cryst. C58, m608-m610. [CrossRef] [details]
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002b). Acta Cryst. E58, m691-m693. [details]
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002c). Acta Cryst. E58, m730-m732. [CrossRef] [details]
Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.
Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484-1485.
Paz, F. A. A. & Klinowski, J. (2004a). J. Solid State Chem. 177, 3423-3432. [CrossRef] [ChemPort]
Paz, F. A. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3882-2893. [CrossRef] [PubMed] [ChemPort]
Paz, F. A. A. & Klinowski, J. (2004c). Inorg. Chem. 43, 3948-3954. [CrossRef] [PubMed] [ChemPort]
Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759-2768.
Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207-210.
Rowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3-14. [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Song, J. L., Prosvirin, A. V., Zhao, H. H. & Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 3706-3711.
Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484. [ISI] [CrossRef] [ChemPort]


Acta Cryst (2005). E61, m1628-m1632   [ doi:10.1107/S1600536805023263 ]