[Journal logo]

Volume 61 
Part 8 
Pages m1459-m1461  
August 2005  

Received 6 June 2005
Accepted 29 June 2005
Online 6 July 2005

Key indicators
Single-crystal X-ray study
T = 120 K
Mean [sigma](C-C) = 0.003 Å
R = 0.022
wR = 0.055
Data-to-parameter ratio = 19.4
Details

Propane-1,3-diaminium hydrogenarsenate monohydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk

The title compound, (C3H12N2)[HAsO4]·H2O, contains a network of propane-1,3-diaminium cations, hydrogenarsenate anions [mean As-O = 1.687 (2) Å] and water molecules. The crystal packing involves anion-to-anion and water-to-anion O-H...O hydrogen bonds, resulting in infinite chains containing the unusual R33(10) graph-set motif. Cation-to-anion and cation-to-water N-H...O hydrogen bonds generate a three-dimensional overall structure.

Comment

The title compound, (C3H12N2)[HAsO4]·H2O, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.]; Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]; Todd & Harrison, 2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.]). In particular, (I)[link] complements propane-1,3-diaminium bis(dihydrogenarsenate), (C3H12N2)[H2AsO4]2 (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.]), prepared under different pH conditions.

[Scheme 1]

The [HAsO4]2- hydrogenarsenate group in (I)[link] has normal tetrahedral geometry [mean As-O = 1.687 (2) Å], with the protonated As1-O4 vertex showing its usual lengthening relative to the unprotonated As-O bonds (Table 1[link]). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I)[link] interact by means of a network of O-H...O and N-H...O hydrogen bonds (Table 2[link]). The [HAsO4]2- units and water molecules are linked into polymeric chains (Fig. 2[link]) propagating along [010] by way of anion-to-anion O4-H1...O2i and water-to-anion O5-H14...O1 and O5-H15...O2ii bonds (Table 2[link]). This arrangement results in an unusual R33(10) graph-set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif. The As1...As1i separation is 4.7991 (3) Å.

The organic species interacts with the hydrogenarsenate/water chains by way of six N-H...O hydrogen bonds [mean H...O = 1.89 Å, mean N-H...O = 171° and mean N...O = 2.793 (2) Å]. One of the acceptor O atoms is part of a water molecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a three-dimensional network (Fig. 3[link]).

The hydrogen-bonded hydrogenarsenate/water chains in (I)[link] are different from the motifs seen in related structures. In bis(cycloheptylaminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.]) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]), hydrogen-bonded dimers of [HAsO4]2- units occur, with the dimers bridged into double chains by intervening water molecules. In the unhydrated piperidinium dihydrogenarsenate (Lee & Harrison, 2003b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.]) and t-butylammonium dihydrogenarsenate (Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]), single chains of [H2AsO4]- anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis(dihydrogenarsenate) (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.]), the same organic cation as found in (I)[link] is combined with dihydrogenarsenate [H2AsO4]- groups, with the latter forming double chains.

[Figure 1]
Figure 1
A view of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I)[link].
[Figure 3]
Figure 3
The crystal packing of (I)[link]. Dashed lines indicate hydrogen bonds.

Experimental

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous H3AsO4 solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12, which is beyond the second end-point for H3AsO4 (i.e. the predominant species is [HAsO4]2-). Platy crystals of (I)[link] grew as the water evaporated over the course of a few days.

Crystal data
  • (C3H12N2)[HAsO4]·H2O

  • Mr = 234.09

  • Monoclinic, P 21 /c

  • a = 7.1327 (2) Å

  • b = 16.8046 (6) Å

  • c = 7.9402 (2) Å

  • [beta] = 113.253 (2)°

  • V = 874.42 (5) Å3

  • Z = 4

  • Dx = 1.778 Mg m-3

  • Mo K[alpha] radiation

  • Cell parameters from 2043 reflections

  • [theta] = 2.9-27.5°

  • [mu] = 3.87 mm-1

  • T = 120 (2) K

  • Plate, colourless

  • 0.32 × 0.24 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • [omega] and [varphi] scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.370, Tmax = 0.892

  • 11562 measured reflections

  • 2002 independent reflections

  • 1804 reflections with I > 2[sigma](I)

  • Rint = 0.036

  • [theta]max = 27.5°

  • h = -9 [rightwards arrow] 8

  • k = -20 [rightwards arrow] 21

  • l = -10 [rightwards arrow] 10

Refinement
  • Refinement on F2

  • R[F2 > 2[sigma](F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.05

  • 2002 reflections

  • 103 parameters

  • H-atom parameters constrained

  • w = 1/[[sigma]2(Fo2) + (0.0218P)2 + 0.7899P] where P = (Fo2 + 2Fc2)/3

  • ([Delta]/[sigma])max = 0.001

  • [Delta][rho]max = 0.49 e Å-3

  • [Delta][rho]min = -0.53 e Å-3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0032 (6)

Table 1
Selected geometric parameters (Å, °)[link]

As1-O1 1.6612 (14)
As1-O2 1.6746 (13)
As1-O3 1.6814 (14)
As1-O4 1.7302 (13)
N1-C1-C2-C3 175.33 (16)
C1-C2-C3-N2 175.49 (16)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D-H...A D-H H...A D...A D-H...A
O4-H1...O2i 0.93 1.71 2.6207 (19) 166
O5-H14...O1 0.92 1.79 2.709 (2) 177
O5-H15...O2ii 0.89 1.98 2.858 (2) 169
N1-H2...O1iii 0.91 1.81 2.711 (2) 173
N1-H3...O3i 0.91 1.96 2.855 (2) 166
N1-H4...O5iv 0.91 1.90 2.798 (2) 168
N2-H11...O3ii 0.91 1.90 2.802 (2) 170
N2-H12...O2v 0.91 1.95 2.851 (2) 172
N2-H13...O3 0.91 1.84 2.743 (2) 175
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C-H = 0.99 Å and N-H = 0.91 Å) and refined as riding, allowing for free rotation of the -NH3 groups. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. [CrossRef] [ChemPort] [ISI]
Blessing, R. H. (1995). Acta Cryst. A51, 33-37. [details]
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. [details]
Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741. [details]
Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960. [details]
Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153. [details]
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026. [details]
Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361. [details]
Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291. [details]


Acta Cryst (2005). E61, m1459-m1461   [ doi:10.1107/S1600536805020702 ]