metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium hydrogenarsenate monohydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 6 June 2005; accepted 29 June 2005; online 6 July 2005)

The title compound, (C3H12N2)[HAsO4]·H2O, contains a network of propane-1,3-diaminium cations, hydrogenarsenate anions [mean As—O = 1.687 (2) Å] and water mol­ecules. The crystal packing involves anion-to-anion and water-to-anion O—H⋯O hydrogen bonds, resulting in infinite chains containing the unusual R33(10) graph-set motif. Cation-to-anion and cation-to-water N—H⋯O hydrogen bonds generate a three-dimensional overall structure.

Comment

The title compound, (C3H12N2)[HAsO4]·H2O, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing structural studies of hydrogen-bonding inter­actions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.]; Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]; Todd & Harrison, 2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.]). In particular, (I)[link] complements propane-1,3-diaminium bis­(di­hydrogen­arsen­ate), (C3H12N2)[H2AsO4]2 (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.]), prepared under different pH conditions.

[Scheme 1]

The [HAsO4]2− hydrogenarsenate group in (I)[link] has normal tetra­hedral geometry [mean As—O = 1.687 (2) Å], with the protonated As1—O4 vertex showing its usual lengthening relative to the unprotonated As—O bonds (Table 1[link]). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of a network of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). The [HAsO4]2− units and water mol­ecules are linked into polymeric chains (Fig. 2[link]) propagating along [010] by way of anion-to-anion O4—H1⋯O2i and water-to-anion O5—H14⋯O1 and O5—H15⋯O2ii bonds (Table 2[link]). This arrangement results in an unusual R33(10) graph-set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif. The As1⋯As1i separation is 4.7991 (3) Å.

The organic species inter­acts with the hydrogenarsenate/water chains by way of six N—H⋯O hydrogen bonds [mean H⋯O = 1.89 Å, mean N—H⋯O = 171° and mean N⋯O = 2.793 (2) Å]. One of the acceptor O atoms is part of a water mol­ecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a three-dimensional network (Fig. 3[link]).

The hydrogen-bonded hydrogenarsenate/water chains in (I)[link] are different from the motifs seen in related structures. In bis­(cyclo­heptyl­aminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.]) and bis­(benzyl­ammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]), hydrogen-bonded dimers of [HAsO4]2− units occur, with the dimers bridged into double chains by inter­vening water mol­ecules. In the unhydrated piperidinium dihydrogenarsenate (Lee & Harrison, 2003b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.]) and t-butyl­ammonium dihydrogenarsenate (Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]), single chains of [H2AsO4] anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis­(dihydrogenarsenate) (Wilkinson & Harrison, 2005[Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.]), the same organic cation as found in (I)[link] is combined with dihydrogenarsenate [H2AsO4] groups, with the latter forming double chains.

[Figure 1]
Figure 1
A view of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I)[link].
[Figure 3]
Figure 3
The crystal packing of (I)[link]. Dashed lines indicate hydrogen bonds.

Experimental

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous H3AsO4 solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12, which is beyond the second end-point for H3AsO4 (i.e. the predominant species is [HAsO4]2−). Platy crystals of (I)[link] grew as the water evaporated over the course of a few days.

Crystal data
  • (C3H12N2)[HAsO4]·H2O

  • Mr = 234.09

  • Monoclinic, P 21 /c

  • a = 7.1327 (2) Å

  • b = 16.8046 (6) Å

  • c = 7.9402 (2) Å

  • β = 113.253 (2)°

  • V = 874.42 (5) Å3

  • Z = 4

  • Dx = 1.778 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2043 reflections

  • θ = 2.9–27.5°

  • μ = 3.87 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.32 × 0.24 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.370, Tmax = 0.892

  • 11562 measured reflections

  • 2002 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

  • h = −9 → 8

  • k = −20 → 21

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.05

  • 2002 reflections

  • 103 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0218P)2 + 0.7899P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0032 (6)

Table 1
Selected geometric parameters (Å, °)[link]

As1—O1 1.6612 (14)
As1—O2 1.6746 (13)
As1—O3 1.6814 (14)
As1—O4 1.7302 (13)
N1—C1—C2—C3 175.33 (16)
C1—C2—C3—N2 175.49 (16)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O2i 0.93 1.71 2.6207 (19) 166
O5—H14⋯O1 0.92 1.79 2.709 (2) 177
O5—H15⋯O2ii 0.89 1.98 2.858 (2) 169
N1—H2⋯O1iii 0.91 1.81 2.711 (2) 173
N1—H3⋯O3i 0.91 1.96 2.855 (2) 166
N1—H4⋯O5iv 0.91 1.90 2.798 (2) 168
N2—H11⋯O3ii 0.91 1.90 2.802 (2) 170
N2—H12⋯O2v 0.91 1.95 2.851 (2) 172
N2—H13⋯O3 0.91 1.84 2.743 (2) 175
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C—H = 0.99 Å and N—H = 0.91 Å) and refined as riding, allowing for free rotation of the –NH3 groups. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (C3H12N2)2+·[HAsO4]2-·H2O, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003a; Wilkinson & Harrison, 2004; Todd & Harrison, 2005). In particular, (I) complements propane-1,3-diaminium bis(dihydrogenarsenate), (C3H12N2)2+·2[H2AsO4]- (Wilkinson & Harrison, 2005), prepared under different pH conditions.

The [HAsO4]2- hydrogenarsenate group in (I) has normal tetrahedral geometry [mean As—O = 1.687 (2) Å], with the protonated As1—O4 vertex showing its usual lengthening relative to the unprotonated As—O bonds (Table 1). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of O—H···O and N—H···O hydrogen bonds (Table 2). The [HAsO4]2- units and water molecules are linked into polymeric chains (Fig. 2) propagating along [010] by way of anion-to-anion O4—H1···O2i and water-to-anion O5—H14···O1 and O5—H15···O2ii bonds (Table 2). This arrangement results in an unusual R33(10) graph-set (Bernstein et al., 1995) motif. The As1···As1i separation is 4.7991 (3) Å.

The organic species interacts with the hydrogenarsenate/water chains by way of six N—H···O hydrogen bonds [mean H···O = 1.89 Å, mean N—H···O = 171° and mean N···O = 2.793 (2) Å]. One of the acceptor O atoms is part of a water molecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a three-dimensional network (Fig. 3).

The hydrogen-bonded hydrogenarsenate/water chains in (I) are different from the motifs seen in related structures. In bis(cycloheptylaminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003b), hydrogen-bonded dimers of [HAsO4]2- units occur, with the dimers bridged into double chains by intervening water molecules. In the unhydrated piperidinum dihydrogenarsenate (Lee & Harrison, 2003c) and t-butylammonium dihydrogenarsenate (Wilkinson & Harrison, 2004), single chains of [H2AsO4]- anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis(dihydrogenarsenate) (Wilkinson & Harrison, 2005), the same organic cation as found in (I) is combined with dihydrogenarsenate [H2AsO4]- groups, with the latter forming double chains.

Experimental top

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous H3AsO4 solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12, which is beyond the second end-point for H3AsO4 (i.e. the predominant species is [HAsO4]2-). Platy crystals of (I) grew as the water evaporated over the course of a few days.

Refinement top

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C—H = 0.99 Å and N—H = 0.91 Å) and refined as riding, allowing for free rotation of the –NH3 groups. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I).
[Figure 3] Fig. 3. The crystal packing of (I). Dashed lines indicate hydrogen bonds.
Propane-1,3-diaminium hydrogenarsenate monohydrate top
Crystal data top
(C3H12N2)[HAsO4]·H2OF(000) = 480
Mr = 234.09Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2043 reflections
a = 7.1327 (2) Åθ = 2.9–27.5°
b = 16.8046 (6) ŵ = 3.87 mm1
c = 7.9402 (2) ÅT = 120 K
β = 113.253 (2)°Plate, colourless
V = 874.42 (5) Å30.32 × 0.24 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2002 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 98
Tmin = 0.370, Tmax = 0.892k = 2021
11562 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (others)
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.7899P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2002 reflectionsΔρmax = 0.49 e Å3
103 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (6)
Crystal data top
(C3H12N2)[HAsO4]·H2OV = 874.42 (5) Å3
Mr = 234.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1327 (2) ŵ = 3.87 mm1
b = 16.8046 (6) ÅT = 120 K
c = 7.9402 (2) Å0.32 × 0.24 × 0.03 mm
β = 113.253 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1804 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.892Rint = 0.036
11562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
2002 reflectionsΔρmin = 0.53 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.33625 (3)0.169777 (11)0.40666 (2)0.00857 (9)
O10.2831 (2)0.08464 (8)0.48468 (19)0.0146 (3)
O20.1852 (2)0.24466 (8)0.41487 (19)0.0128 (3)
O30.5862 (2)0.19099 (9)0.51186 (19)0.0128 (3)
O40.2905 (2)0.15016 (8)0.17988 (18)0.0147 (3)
O50.1693 (2)0.09842 (9)0.7709 (2)0.0209 (3)
N10.7723 (3)0.44871 (10)0.2130 (2)0.0125 (3)
N20.7725 (3)0.30904 (10)0.7604 (2)0.0108 (3)
C10.7251 (3)0.45673 (12)0.3780 (3)0.0128 (4)
C20.7718 (3)0.37949 (12)0.4861 (3)0.0140 (4)
C30.7418 (3)0.38739 (12)0.6644 (3)0.0136 (4)
H10.25750.19350.10010.018*
H20.74570.49550.15040.015*
H30.69380.40950.13980.015*
H40.90650.43610.24760.015*
H50.57920.47030.34070.015*
H60.80750.50040.45620.015*
H70.91460.36370.51350.017*
H80.68140.33700.41070.017*
H90.84020.42660.74470.016*
H100.60230.40710.63840.016*
H110.72520.31180.85120.013*
H120.90790.29690.80970.013*
H130.70330.27060.67880.013*
H140.20350.09400.67060.025*
H150.16740.14920.80090.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00955 (13)0.00763 (13)0.00873 (12)0.00002 (7)0.00380 (9)0.00067 (7)
O10.0223 (8)0.0088 (7)0.0165 (7)0.0030 (6)0.0117 (6)0.0006 (6)
O20.0129 (7)0.0109 (7)0.0148 (7)0.0027 (6)0.0057 (6)0.0021 (5)
O30.0095 (7)0.0155 (7)0.0127 (7)0.0013 (6)0.0039 (6)0.0021 (6)
O40.0223 (8)0.0119 (7)0.0089 (7)0.0029 (6)0.0052 (6)0.0001 (6)
O50.0312 (9)0.0169 (8)0.0229 (8)0.0060 (7)0.0195 (7)0.0049 (6)
N10.0148 (8)0.0095 (8)0.0116 (8)0.0023 (7)0.0034 (7)0.0008 (6)
N20.0112 (8)0.0119 (8)0.0105 (8)0.0013 (7)0.0055 (7)0.0005 (7)
C10.0143 (10)0.0107 (10)0.0139 (10)0.0005 (8)0.0061 (8)0.0001 (8)
C20.0170 (10)0.0114 (10)0.0157 (10)0.0038 (8)0.0086 (9)0.0018 (8)
C30.0172 (10)0.0095 (10)0.0160 (10)0.0001 (8)0.0086 (9)0.0017 (8)
Geometric parameters (Å, º) top
As1—O11.6612 (14)C2—C31.518 (3)
As1—O21.6746 (13)C2—H70.9900
As1—O31.6814 (14)C2—H80.9900
As1—O41.7302 (13)C3—N21.493 (2)
O4—H10.9323C3—H90.9900
N1—C11.482 (2)C3—H100.9900
N1—H20.9100N2—H110.9100
N1—H30.9100N2—H120.9100
N1—H40.9100N2—H130.9100
C1—C21.519 (3)O5—H140.9237
C1—H50.9900O5—H150.8880
C1—H60.9900
O1—As1—O2112.81 (7)C1—C2—C3111.85 (16)
O1—As1—O3110.52 (7)C1—C2—H7109.2
O2—As1—O3113.18 (7)C3—C2—H7109.2
O1—As1—O4104.30 (7)C1—C2—H8109.2
O2—As1—O4108.90 (7)C3—C2—H8109.2
O3—As1—O4106.54 (7)H7—C2—H8107.9
As1—O4—H1116.9N2—C3—C2110.64 (16)
C1—N1—H2109.5N2—C3—H9109.5
C1—N1—H3109.5C2—C3—H9109.5
H2—N1—H3109.5N2—C3—H10109.5
C1—N1—H4109.5C2—C3—H10109.5
H2—N1—H4109.5H9—C3—H10108.1
H3—N1—H4109.5C3—N2—H11109.5
N1—C1—C2110.27 (16)C3—N2—H12109.5
N1—C1—H5109.6H11—N2—H12109.5
C2—C1—H5109.6C3—N2—H13109.5
N1—C1—H6109.6H11—N2—H13109.5
C2—C1—H6109.6H12—N2—H13109.5
H5—C1—H6108.1H14—O5—H15110.2
N1—C1—C2—C3175.33 (16)C1—C2—C3—N2175.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.931.712.6207 (19)166
O5—H14···O10.921.792.709 (2)177
O5—H15···O2ii0.891.982.858 (2)169
N1—H2···O1iii0.911.812.711 (2)173
N1—H3···O3i0.911.962.855 (2)166
N1—H4···O5iv0.911.902.798 (2)168
N2—H11···O3ii0.911.902.802 (2)170
N2—H12···O2v0.911.952.851 (2)172
N2—H13···O30.911.842.743 (2)175
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[HAsO4]·H2O
Mr234.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.1327 (2), 16.8046 (6), 7.9402 (2)
β (°) 113.253 (2)
V3)874.42 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.87
Crystal size (mm)0.32 × 0.24 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.370, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
11562, 2002, 1804
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.05
No. of reflections2002
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
As1—O11.6612 (14)As1—O31.6814 (14)
As1—O21.6746 (13)As1—O41.7302 (13)
N1—C1—C2—C3175.33 (16)C1—C2—C3—N2175.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.931.712.6207 (19)166
O5—H14···O10.921.792.709 (2)177
O5—H15···O2ii0.891.982.858 (2)169
N1—H2···O1iii0.911.812.711 (2)173
N1—H3···O3i0.911.962.855 (2)166
N1—H4···O5iv0.911.902.798 (2)168
N2—H11···O3ii0.911.902.802 (2)170
N2—H12···O2v0.911.952.851 (2)172
N2—H13···O30.911.842.743 (2)175
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37. CrossRef CAS Web of Science IUCr Journals
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals
First citationLee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739–m741. Web of Science CSD CrossRef IUCr Journals
First citationLee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959–m960. Web of Science CSD CrossRef IUCr Journals
First citationLee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151–m1153. Web of Science CSD CrossRef IUCr Journals
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
First citationTodd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024–m1026. Web of Science CSD CrossRef IUCr Journals
First citationWilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361. Web of Science CSD CrossRef IUCr Journals
First citationWilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289–m1291. Web of Science CrossRef IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds