[Journal logo]

Volume 61 
Part 8 
Pages o2424-o2425  
August 2005  

Received 12 May 2005
Accepted 19 May 2005
Online 9 July 2005

Key indicators
Single-crystal X-ray study
T = 150 K
Mean [sigma](C-C) = 0.003 Å
R = 0.046
wR = 0.119
Data-to-parameter ratio = 12.1
Details

Cyclohexanone at 150 K

aChemical Crystallography Laboratory, Chemistry Research Laboratory, Mansfield Road, Oxford University, Oxford OX1 3TA, England
Correspondence e-mail: howard.shallard-brown@lmh.ox.ac.uk

The structure of cyclohexanone, C6H10O, at 150 K is that of discrete molecules, with no strong intermolecular interactions.

Comment

Many of the esters and ketones used in the flavours and fragrances industry are liquid at room temperature, meaning that, in the past, crystalline derivatives have had to be prepared for X-ray analysis. As part of a programme to systematize in situ crystal growth from liquids, we have examined a range of commercially available chemicals. Low-molecular weight organic ketones are liquid at room temperature. The molecules of cyclohexanone, (I)[link], exist in the crystal structure at 150 K as discrete entities, with no strong intermolecular interactions.

[Scheme 1]
[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 2]
Figure 2
The crystal structure, viewed down the a axis.

Experimental

A 3 mm column of the title material, which is a liquid at room temperature, was sealed in a 0.3 mm Lindemann tube. The Lindemann tube was not precisely parallel to the [varphi] axis. A single crystal of the compound was grown by keeping the compound under a cold nitrogen gas stream (Oxford Cryostream 600) at 180 K and slowly moving a small liquid zone, created by a micro-heating coil, up and down the sample. Once a suitable approximately single-crystal specimen had been obtained, the main data collection was carried out at 150 K. Because not all of the data were collected with the Lindemann tube perpendicular to the X-ray beam, the multi-scan corrections applied by DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) also contain contributions due to changes in the illuminated volume of the cylindrical sample, which affects the value of Tmin/Tmax.

Crystal data
  • C6H10O

  • Mr = 98.14

  • Orthorhombic, P 21 21 21

  • a = 5.3736 (2) Å

  • b = 7.0394 (3) Å

  • c = 15.1910 (7) Å

  • V = 574.63 (4) Å3

  • Z = 4

  • Dx = 1.134 Mg m-3

  • Mo K[alpha] radiation

  • Cell parameters from 784 reflections

  • [theta] = 5-27°

  • [mu] = 0.08 mm-1

  • T = 150 K

  • Cylinder, colourless

  • 0.70 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • [omega] scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.74, Tmax = 0.98

  • 9235 measured reflections

  • 775 independent reflections

  • 693 reflections with I > 2[sigma](I)

  • Rint = 0.085

  • [theta]max = 27.4°

  • h = -6 [rightwards arrow] 6

  • k = -9 [rightwards arrow] 9

  • l = -19 [rightwards arrow] 19

Refinement
  • Refinement on F2

  • R[F2 > 2[sigma](F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.02

  • 774 reflections

  • 64 parameters

  • H-atom parameters constrained

  • w = 1/[[sigma]2(F) + 0.08 + 0.07P], where P = (max(Fo2, 0) + 2Fc2)/3

  • ([Delta]/[sigma])max = 0.009

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.17 e Å-3

Table 1
Selected geometric parameters (Å, °)[link]

C1-C2 1.501 (2)
C1-C6 1.513 (2)
C1-O7 1.213 (2)
C2-C3 1.532 (3)
C3-C4 1.520 (3)
C4-C5 1.523 (3)
C5-C6 1.533 (2)
C2-C1-C6 115.45 (14)
C2-C1-O7 122.61 (15)
C6-C1-O7 121.93 (15)
C1-C2-C3 112.29 (15)
C2-C3-C4 111.63 (15)
C3-C4-C5 110.85 (16)
C4-C5-C6 111.04 (15)
C5-C6-C1 111.65 (13)

All H atoms were located in a difference map and were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C-H = 0.97-1.01 Å, and Uiso(H) = 1.2Ueq(C)], after which they were refined with riding constraints. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius Bv, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. [details]
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. [details]
Nonius (1997). COLLECT. Nonius Bv, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.


Acta Cryst (2005). E61, o2424-o2425   [ doi:10.1107/S1600536805015977 ]