Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Stephen A. Moggach, ${ }^{\text {a }}$ Stewart J. Clark $^{\mathbf{b}}$ and Simon Parsons ${ }^{\text {a }}$

${ }^{\text {a School }}$ of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, and ${ }^{\text {b }}$ Department of Physics, The University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail: s.parsons@ed.ac.uk

Key indicators

Single-crystal X-ray study
$T=30 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.017$
$w R$ factor $=0.047$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

l-Cysteine-I at 30 K

The crystal structure of the orthorhombic phase I of Lcysteine, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$, has been determined at 30 K . The molecule adopts a gauche ${ }^{+}$conformation and the structure consists of zwitterions connected into sinusoidal layers by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Further $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the structure into a three-dimensional array. Under ambient conditions, the thiol H atom is disordered in such a way as to form intermolecular $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{S}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. At 30 K the structure is ordered with retention of the $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ contacts $[\mathrm{S} \cdots \mathrm{S}=3.8489$ (4) \AA, $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}=2.66(3) \AA$ and $\left.\mathrm{S}-\mathrm{H} \cdots \mathrm{S}=150.8(16)^{\circ}\right]$.

Comment

The amino acid l-cysteine (Fig. 1) is known to crystallize in two polymorphic forms, viz. an orthorhombic phase $\left(P 2_{1} 2_{1} 2_{1}\right.$, $\left.Z^{\prime}=1\right)$ and a monoclinic phase $\left(P 2_{1}, Z^{\prime}=2\right)$. We refer to these as l-cysteine-I and l-cysteine-II, respectively. The crystal structure of L-cysteine-I was determined by Kerr \& Ashmore (1973) by X-ray diffraction and then again by Kerr et al. (1975) by neutron diffraction. Both of these studies were at ambient temperature. L-Cysteine-II was characterized at ambient temperature by Harding \& Long (1968) and later by Görbitz \& Dalhus (1996) at 120 K ; both of these determinations employed X-ray diffraction. Two new polymorphs (one orthorhombic and the other monoclinic) have recently been characterized by us at elevated pressure (Moggach et al., 2005).

(I)

Both L-cysteine-I and L-cysteine-II crystallize with the molecule as its zwitterionic tautomer (Fig. 1). In principle, the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$ torsion angle $\left(\chi_{1}\right)$ can adopt values of $c a 60^{\circ}$ (the gauche + conformer, g^{+}), $-60^{\circ}\left(g^{-}\right)$and 180° (trans or t). In L-cysteine-I at 30 K , this parameter is $70.66(9)^{\circ}$, which compares with a value of 65.3° as determined by X-ray diffraction at room temperature. This is consistent with the finding of Görbitz (1990) that in small molecules there is a strong preference for the g^{+}conformation.

Intermolecular interactions in both forms of l-cysteine are dominated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In l-cysteine-I, the

Received 13 July 2005 Accepted 25 July 2005 Online 30 July 2005

Figure 1
The molecular structure of L-cysteine as observed in the crystal structure of orthorhombic l-cysteine at 30 K and ambient pressure. The displacement ellipsoids are drawn at the 50% probability level, and the H atoms as circles of arbitrary radius.
shortest of these, $\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{O} 2$, lies along c to form a $C(5)$ chain (Bernstein et al., 1995). The second shortest hydrogen bond, $\mathrm{N} 1-\mathrm{H} 5 \cdots \mathrm{O} 1$, links molecules into $C(5)$ chains, which run along a. The combination of these two $C(5)$ chains yields a layer composed of $R_{4}^{4}(16)$ ring motifs (Fig. 2). The layer is parallel to the ac plane, though it is not planar, having a sinusoidal appearance when viewed in projection down c. The last of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions, $\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{O} 2$, acts to link the layers together along the b direction. Pairs of N1H6 . O 2 contacts form $R_{3}^{2}(9)$ ring motifs (Fig. 3).

Although the crystal structures of both polymorphs of Lcysteine are dominated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, the thiol group is also capable of forming hydrogen bonds. Hydrogen bonds where $\mathrm{Csp}{ }^{3}-\mathrm{SH}$ groups act as donors are very weak, leading to red shifts of only $c a 20 \mathrm{~cm}^{-1}$ in vibrational spectra (Desiraju \& Steiner, 1999). This weakness often results in disorder in the H -atom position, and thus geometric data for 'well behaved' $\mathrm{S}-\mathrm{H} \cdots X$ interactions are rather sparse.

The structure of l-cysteine-II is unusual in thiol chemistry because it contains ordered thiol groups; intermolecular S $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{S}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed by the two molecules that make up the asymmetric unit. The H \cdots S and S. . S distances in l-cysteine-II are 2.78 (4) and 4.080 (1) A, respectively (Görbitz \& Dalhus, 1996). These are similar to other systems, e.g. hydrogen sulfide (2.68-2.74 and 3.985$4.027 \AA$; Cockcroft \& Fitch, 1990) and hexakis(mercaptomethyl)benzene (ca 2.8 and $4.0 \AA$; Mallinson et al., 1997) quoted in a survey by Desiraju \& Steiner (1999).

The thiol group is disordered in the crystal structure of L -cysteine-I at room temperature. Different components of the disorder lead to the formation of $\mathrm{S}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, but the latter is marginally favoured. This

Figure 2
Hydrogen-bonded layers in l-cysteine-I via $\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {iv }}$ and $\mathrm{N} 1-$ $\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$ interactions. These build $R_{4}^{4}(16)$ rings. This view is along b. See Table 2 for symmetry codes.

Figure 3
The layers shown in Fig. 2 are connected by $\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{O} 2^{\mathrm{iii}}$ hydrogen bonds. The hydrogen bonds illustrated in Fig. 2 are shown in orange; the hydrogen bonds that connect the layers are shown in black. This view is along c.
result is consistent with the results of DFT calculations, which place the $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ structure $4.11 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy. This energy difference is small, and it suggests that the disorder may be frozen out at low enough temperatures.

This proves to be the case, and at 30 K the thiol H atom in L -cysteine-I is ordered (Fig. 4), forming an $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond, with parameters given in Table 2. The geometrical parameters of this interaction are $\mathrm{S} \cdots \mathrm{S}=3.8489(4) \AA$, $\mathrm{H} \cdots \mathrm{S}=2.66$ (3) \AA and $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}=150.8(16)^{\circ}$. This bond is shorter than that in l-cysteine-II and the other systems cited above. The $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ interactions form an infinite hydrogenbonded chain which zigzags along c. These interactions support the $R_{3}^{2}(9)$ ring motifs in connecting the sinusoidal layers formed by $R_{4}^{4}(16)$ ring motifs (Fig. 3).

At $0.06 \AA^{2}$, the isotropic displacement parameter of the thiol H atom is high relative to those of the other atoms in the
system $\left(0.008-0.017 \AA^{2}\right)$. This suggests that the thiol H atom is still quite mobile at 30 K , and its behaviour at still lower temperatures would be of considerable interest.

Experimental

Crystals of orthorhombic l-cysteine-I were obtained from Sigma (99%, catalogue number G, 1002) and used as received.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=121.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.1435$ (4) А
$b=11.9365$ (5) \AA
$c=5.4158$ (3) A
$V=526.44(4) \AA^{3}$
$Z=4$
$D_{x}=1.529 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker-Nonius APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.775, T_{\text {max }}=0.920$
4686 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 4210
reflections
$\theta=3.0-31.0^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=30 \mathrm{~K}$
Block, colourless
$0.40 \times 0.20 \times 0.17 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.047$
$S=1.03$
1514 reflections
93 parameters
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.02 P)^{2}\right.$
$+0.04 P]$
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
592 Friedel pairs
Flack parameter: -0.02 (5)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.8237(10)$	$\mathrm{C} 2-\mathrm{N} 1$	$1.4843(12)$
$\mathrm{S} 1-\mathrm{H} 1$	$1.31(3)$	$\mathrm{C} 3-\mathrm{O} 1$	$1.2444(12)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.5223(13)$	$\mathrm{C} 3-\mathrm{O} 2$	$1.2623(11)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.5359(13)$		
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$113.91(6)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$116.98(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.11(8)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$116.87(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$110.73(7)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	$126.14(10)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$110.96(8)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~S} 1-\mathrm{H} 1 \cdots \mathrm{~S}^{\mathrm{i}}$	$1.30(3)$	$2.66(3)$	$3.8489(4)$	$151(2)$
$\mathrm{N} 1-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(2)$	$1.97(2)$	$2.7694(11)$	$162(2)$
$\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{O}^{\text {iii }}$	$0.8(1)$	$2.12(1)$	$2.9451(11)$	$159(2)$
$\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{O}^{\text {iv }}$	$0.89(2)$	$1.87(2)$	$2.7546(11)$	$170(1)$
$\mathrm{C} 1-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	$0.96(2)$	$2.56(2)$	$3.2748(13)$	$132(1)$
$\mathrm{C} 2-\mathrm{H} 4 \cdots 1^{\mathrm{v}}$	$0.93(1)$	$2.85(1)$	$3.7770(9)$	$175(1)$

Symmetry codes: (i) $-x+\frac{1}{2},-y+2,+z-\frac{1}{2}$; (ii) $+x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (iii) $-x+\frac{3}{2},-y+2,+z+\frac{1}{2}$; (iv) $x, y, z+1 ;$ (v) $-x+1,+y-\frac{1}{2},-z+\frac{3}{2}$.

Figure 4
Difference map showing location of the thiol H atom. Contours are drawn at 0.4 (green), 0.6 (blue) and $0.8 \mathrm{e}^{-3}$ (red).

H atoms were located in a difference map. The aim of this structure determination was to determine the position of the H atom attached to S 1 , and therefore all H atoms were refined independently with isotropic displacement parameters. Two reflections were omitted, one as an outlier, the other because it was obscured by the beam stop.

The $a b$ initio calculations were performed with the plane-wave pseudopotential implementation of density functional theory (DFT) using the CASTEP code (Segall et al., 2002). Plane-wave basis sets have many benefits compared with conventionally used quantum chemistry basis sets; in particular, there exists a simple parameter, the cutoff energy, to determine the completeness of the basis. This gives us confidence that the wavefunction can describe any properties without bias towards any other particular result (Clark et al., 1998). In our calculations, the many-body exchange and correlation interactions are described using the generalized gradient approximation (Perdew \& Wang, 1992). Such calculations are capable of giving accurate and reliable structural and electronic information. Ultrasoft pseudopotentials (Vanderbilt, 1990) are used to describe the elec-tron-ion interactions. A cut-off energy of 380 eV is used, which converged the total energy of the system to 1.0 meV atom $^{-1}$. The Monkhorst-Pack k-point sampling scheme (Monkhorst \& Pack, 1976) was used to perform the integrations in k-space over the first Brillouin zone with the grids for each cell chosen to be dense enough to also converge the total energy to $1.0 \mathrm{meV}^{\mathrm{atom}}{ }^{-1}$. For each structure considered, the geometry (atomic positions and unit-cell parameters) was optimized using a conjugate gradient algorithm. The tolerances used give energy differences between structures accurate to better than 1.0 meV .

Data collection: APEX (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996), DIAMOND (Crystal Impact,

organic papers

2004), MERCURY (Bruno et al., 2002; Taylor \& Macrae, 2001), MCE Fourier Map Viewer (Hušák \& Kratochvila, 2003) and SHELXTL (Sheldrick, 2001); software used to prepare material for publication: CRYSTALS, and PLATON (Spek, 2003) as incorporated into WinGX (Farrugia, 1999).

We thank the EPSRC for funding, and Dr A. Goeta (University of Durham, England) for his helpful experimental advice.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker (2004). APEX and SAINT (Version V7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Clark, S. J., Ackland, G. J. \& Crain, J. (1998). Europhys. Lett. 44, 578-584.
Cockcroft, J. K. \& Fitch, A. N. (1990). Z. Kristallogr. 193, 1-19.

Crystal Impact (2004). DIAMOND. Version 3.0. Crystal Impact, Postfach 1251, 53002 Bonn, Germany. http://www.crystalimpact.com/diamond.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Görbitz, C. H. (1990). Acta Chem. Scand. 44, 584-590.
Görbitz, C. H. \& Dalhus, B. (1996). Acta Cryst. C52, 1756-1759.
Harding, M. M. \& Long, H. A. (1968). Acta Cryst. B24, 1096-1102.
Hušák, M. \& Kratochvila, B. (2003). J. Appl. Cryst. 36, 1104.
Kerr, K. A. \& Ashmore, J. P. (1973). Acta Cryst. B29, 2124-2127.
Kerr, K. A., Ashmore, J. P. \& Koetzle, T. F. (1975). Acta Cryst. B31, 2022-2026. Mallinson, P. R., MacNicol, D. D., McCormack, K. L., Yufit, D. S., Gall, J. H. \& Henderson, R. K. (1997). Acta Cryst. C53, 90-92.
Moggach, S. A., Allan, D. R., Clark, S. J., Gutmann, M. J., Parsons, S., Pulham, C. R. \& Sawyer, L. (2005). In preparation.

Monkhorst, H. J. \& Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.
Perdew, J. P. \& Wang, Y. (1992). Phys. Rev. B, 46, 12947-12954.
Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. \& Payne, M. C. (2002). J. Phys. Condens. Matter, 14, 2717-2744.

Sheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany, and Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Taylor, R. \& Macrae, C. F. (2001). Acta Cryst. B57, 815-827.
Vanderbilt, D. (1990). Phys. Rev. B, 41, 7892-7895.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.

supporting information

Acta Cryst. (2005). E61, o2739-o2742 [https://doi.org/10.1107/S1600536805023688]

l-Cysteine-I at 30 K

Stephen A. Moggach, Stewart J. Clark and Simon Parsons

L-cysteine

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=121.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=8.1435$ (4) Å
$b=11.9365(5) \AA$
$c=5.4158$ (3) \AA
$V=526.44(4) \AA^{3}$
$Z=4$

Data collection

Bruker-Nonius APEX CCD area-detector diffractometer
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.775, T_{\text {max }}=0.920$
4686 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.047$
$S=1.03$
1514 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=256$
$D_{\mathrm{x}}=1.529 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4210 reflections
$\theta=3.0-31.0^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=30 \mathrm{~K}$
Block, colourless
$0.40 \times 0.20 \times 0.17 \mathrm{~mm}$

1516 independent reflections
1474 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.8^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-11 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-6 \rightarrow 7$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.02 P)^{2}+0.04 P\right]$
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Absolute structure: Flack (1983), 592 Friedel pairs
Absolute structure parameter: -0.02 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.41463(3)$	$1.022635(19)$	$0.60963(5)$	0.0087
C1	$0.43549(12)$	$0.88319(8)$	$0.74364(18)$	0.0083

C2	$0.59208(12)$	$0.82254(7)$	$0.66819(17)$	0.0065
C3	$0.61052(11)$	$0.81952(7)$	$0.38602(19)$	0.0068
N1	$0.73776(10)$	$0.87498(7)$	$0.78553(16)$	0.0071
O1	$0.51302(9)$	$0.75892(6)$	$0.26998(15)$	0.0111
O2	$0.72196(8)$	$0.87985(6)$	$0.29348(13)$	0.0082
H1	$0.345(3)$	$0.989(2)$	$0.406(5)$	$0.062(6) *$
H2	$0.4310(17)$	$0.8914(12)$	$0.920(3)$	$0.017(4)^{*}$
H3	$0.3379(17)$	$0.8389(11)$	$0.696(3)$	$0.008(3)^{*}$
H4	$0.5824(17)$	$0.7491(11)$	$0.725(3)$	$0.005(3)^{*}$
H5	$0.8201(19)$	$0.8409(12)$	$0.738(3)$	$0.015(4)^{*}$
H6	$0.7427(16)$	$0.9454(11)$	$0.748(3)$	$0.008(3)^{*}$
H7	$0.7250(16)$	$0.8690(12)$	$0.949(3)$	$0.008(3)^{*}$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.00811(10)$	$0.00808(10)$	$0.00992(11)$	$0.00130(8)$	$-0.00065(8)$	$0.00039(8)$
C1	$0.0078(4)$	$0.0095(4)$	$0.0076(4)$	$0.0010(3)$	$0.0019(3)$	$0.0011(3)$
C2	$0.0065(4)$	$0.0071(3)$	$0.0060(4)$	$-0.0006(3)$	$0.0004(3)$	$-0.0001(3)$
C3	$0.0077(4)$	$0.0070(3)$	$0.0057(4)$	$0.0023(3)$	$-0.0001(3)$	$0.0004(3)$
N1	$0.0076(3)$	$0.0091(3)$	$0.0045(4)$	$0.0004(3)$	$-0.0001(3)$	$0.0000(3)$
O1	$0.0113(3)$	$0.0135(3)$	$0.0086(3)$	$-0.0042(3)$	$-0.0010(3)$	$-0.0014(3)$
O2	$0.0093(3)$	$0.0100(3)$	$0.0051(3)$	$-0.0018(2)$	$0.0004(3)$	$0.0002(2)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C1	1.8237 (10)	C2-H4	0.933 (13)
S1-H1	1.31 (3)	C3-O1	1.2444 (12)
C1-C2	1.5223 (13)	C3-O2	1.2623 (11)
C1-H2	0.961 (16)	N1-H5	0.826 (16)
C1-H3	0.989 (14)	N1-H6	0.866 (14)
C2-C3	1.5359 (13)	N1-H7	0.894 (16)
C2-N1	1.4843 (12)		
C1-S1-H1	95.3 (10)	C3-C2-H4	108.5 (9)
S1-C1-C2	113.91 (6)	N1-C2-H4	108.7 (8)
S1-C1-H2	107.4 (9)	C2-C3-O1	116.98 (8)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 2$	110.3 (8)	C2-C3-O2	116.87 (8)
S1-C1-H3	108.0 (8)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	126.14 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 3$	110.4 (8)	C2-N1-H5	107.9 (11)
$\mathrm{H} 2-\mathrm{C} 1-\mathrm{H} 3$	106.5 (12)	C2-N1-H6	110.2 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	111.11 (8)	H5-N1-H6	111.5 (13)
C1-C2-N1	110.73 (7)	C2-N1-H7	107.3 (9)
C3-C2-N1	110.96 (8)	H5-N1-H7	111.4 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 4$	106.7 (9)	H6-N1-H7	108.5 (13)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~S} 1 — \mathrm{H} 1 \cdots \mathrm{~S}^{\mathrm{i}}$	$1.30(3)$	$2.66(3)$	$3.8489(4)$	$150.8(16)$
$\mathrm{N} 1 — \mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.825(15)$	$1.972(15)$	$2.7694(11)$	$162.1(16)$
$\mathrm{N} 1 — \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.866(13)$	$2.120(13)$	$2.9451(11)$	$159.1(15)$
$\mathrm{N} 1 — \mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.894(16)$	$1.870(16)$	$2.7546(11)$	$169.6(13)$
$\mathrm{C} 1 — \mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	$0.961(16)$	$2.557(15)$	$3.2748(13)$	$131.6(11)$
$\mathrm{C} 2 — \mathrm{H} 4 \cdots \mathrm{~S}^{\mathrm{v}}$	$0.932(14)$	$2.848(13)$	$3.7770(9)$	$174.6(12)$

Symmetry codes: (i) $-x+1 / 2,-y+2, z-1 / 2$; (ii) $x+1 / 2,-y+3 / 2,-z+1$; (iii) $-x+3 / 2,-y+2, z+1 / 2$; (iv) $x, y, z+1$; (v) $-x+1, y-1 / 2,-z+3 / 2$.

