Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gaël Labat ${ }^{\text {a }}$ and Joan Halfpenny ${ }^{\text {b }}$ *

${ }^{\mathrm{a}}$ Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Department of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England

Correspondence e-mail: gael.labat@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.090$
Data-to-parameter ratio $=21.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(3-thienyloxy)ethane: a thiophene-based precursor for thiophene-based azacryptand Mannich bases

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$, is composed of two thiophene rings bridged by an $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ - chain in a trans arrangement. The molecule possesses C_{2} symmetry with the twofold axis bisecting the central $\mathrm{C}-\mathrm{C}$ bond. In the crystal structure, molecules related by a centre of symmetry are bridged by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a zigzag onedimensional chain extending in the c-axis direction.

Comment

The preparation of a range of open-chain cryptand-like structures, incorporating thiophene rings, as precursors for azacryptand Mannich bases, has been described by Barker et al. (1993) and Chaffin et al. $(2001,2002)$. The title compound, (I), was prepared by the reaction of methyl 3-hydroxythio-phene-2-carboxylate with 1,2-dichloroethane and anhydrous potassium carbonate in anhydrous N, N-dimethylformamide, followed by saponification and decarboxylation.

The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. In compound (I), two thiophene rings are bridged by an $-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ - chain in a trans arrangement. A twofold axis bisects the central ethane bond $\left[\mathrm{C} 5-\mathrm{C} 5\left(1-x, y, \frac{1}{2}-z\right)\right]$ and each half of the molecule is almost planar, with $\mathrm{C} 5-\mathrm{O} 1-$ $\mathrm{C} 2-\mathrm{C} 1$ and $\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angles of 0.00 (18) and $-178.45(11)^{\circ}$, respectively. The bond lengths and angles (Table 1) are similar to those in an unsubstituted thiophene described by Bonham \& Momany (1963).

The crystal packing of compound (I) is illustrated in Fig. 2. The molecules related by centres of symmetry are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; details are given in Table 2. It can be seen that the molecules are arranged in a such a way as to form a zigzag one-dimensional polymer extending in the crystallographic c-axis direction.

Experimental

Compound (I) was synthesized according to the procedure described by Chaffin et al. (2001). Suitable crystals for X-ray crystallography

Received 26 July 2005 Accepted 1 August 2005 Online 6 August 2005
analysis were obtained by slow evaporation of a 1:1 ethanoldichloromethane solution.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=262.30$
Monoclinic, $C 2 / c$
$a=22.175(3) \AA$
$b=5.3918(4) \AA$
$c=9.0831(1) \AA$
$\beta=11.362(9){ }^{\circ}$
$V=1011.39(19) \AA^{3}$
$Z=4$
$D_{x}=1.486 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=226.30$
Mo $K \alpha$ radiation
Cell parameters from 9090 reflections
$\theta=1.9-29.6^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Plate, colourless
$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: none 9441 measured reflections
1398 independent reflections
1302 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.090$
$S=1.03$
1398 reflections
64 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

S1-C4	$1.7129(14)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3674(19)$
S1-C1	$1.7178(13)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.4227(17)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.3597(15)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.3672(17)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.4288(15)$	$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.500(2)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1$	$92.55(6)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.83(11)$
C2-O1-C5	$115.12(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$111.56(10)$
C4-C3-C2	$111.88(11)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$108.13(9)$
C1-C2-O1	$127.57(12)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$110.43(10)$
C1-C2-C3	$113.59(12)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	1.00	2.41	$3.3940(16)$	170

Symmetry code: (ii) $-x+1,-y,-z$.
H atoms were located in difference Fourier maps and held fixed with $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$ and $\mathrm{C}-\mathrm{H}=0.94-1.05 \AA$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figure 1
View of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) $1-x, y, \frac{1}{2}-z$.]

Figure 2
The crystal packing of compound (I), viewed down the b axis. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (details are given in Table 2).

The authors thank Professor Helen Stoeckli-Evans (Université de Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. \& Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.

Bonham, R. A. \& Momany, F. A. (1963). J. Phys. Chem. 67 2474-2477.
Chaffin, J. D. E., Barker, J. M. \& Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.
Chaffin, J. D. E., Barker, J. M. \& Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.17) and X-RED 32 (Version 1.04). Stoe \& Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2005). E61, o2815-o2816 [https://doi.org/10.1107/S1600536805024529]

1,2-Bis(3-thienyloxy)ethane: a thiophene-based precursor for thiophene-based azacryptand Mannich bases

Gaël Labat and Joan Halfpenny

1,2-Bis(3-thienyloxy)ethane

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=226.30$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=22.175$ (3) \AA
$b=5.3918$ (4) \AA
$c=9.0831$ (11) \AA
$\beta=111.362$ (9) ${ }^{\circ}$
$V=1011.39(19) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: $0.81 \AA$ pixels mm^{-1}
ω scans
9441 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.090$
$S=1.03$
1398 reflections
64 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
F(000)=472
$$

$$
D_{\mathrm{x}}=1.486 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9090 reflections
$\theta=1.9-29.6^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Plate, colourless
$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$

> 1398 independent reflections
> 1302 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.053$
> $\theta_{\max }=29.4^{\circ}, \theta_{\min }=2.0^{\circ}$
> $h=-30 \rightarrow 30$
> $k=-7 \rightarrow 7$
> $l=-11 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0472 P)^{2}+1.0038 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.705495(15)$	$0.30108(6)$	$0.11836(4)$	$0.02820(13)$
O1	$0.53539(5)$	$0.28858(18)$	$0.14777(11)$	$0.0259(2)$
C3	$0.59883(6)$	$0.0614(2)$	$0.02934(16)$	$0.0261(3)$
H3	0.5630	-0.0585	-0.0223	0.050^{*}
C2	$0.59236(6)$	$0.2606(2)$	$0.12527(14)$	$0.0216(2)$
C4	$0.65818(7)$	$0.0611(2)$	$0.01542(16)$	$0.0282(3)$
H4	0.6733	-0.0522	-0.0426	0.050^{*}
C5	$0.53252(6)$	$0.4969(2)$	$0.24223(15)$	$0.0247(3)$
H5A	0.5691	0.4837	0.3545	0.050^{*}
H5B	0.5403	0.6558	0.1910	0.050^{*}
C1	$0.64618(6)$	$0.4075(2)$	$0.18219(14)$	$0.0236(2)$
H1	0.6573	0.5546	0.2544	0.050^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.02423(18)$	$0.0307(2)$	$0.0318(2)$	$-0.00172(11)$	$0.01271(14)$	$-0.00265(12)$
O1	$0.0246(4)$	$0.0290(5)$	$0.0272(5)$	$-0.0060(3)$	$0.0133(4)$	$-0.0087(3)$
C3	$0.0301(6)$	$0.0217(5)$	$0.0275(6)$	$-0.0026(5)$	$0.0119(5)$	$-0.0034(5)$
C2	$0.0240(5)$	$0.0222(5)$	$0.0194(5)$	$-0.0016(4)$	$0.0091(4)$	$0.0006(4)$
C4	$0.0323(6)$	$0.0231(6)$	$0.0306(6)$	$0.0008(5)$	$0.0132(5)$	$-0.0032(5)$
C5	$0.0280(6)$	$0.0258(6)$	$0.0224(5)$	$-0.0027(5)$	$0.0118(5)$	$-0.0040(4)$
C1	$0.0245(5)$	$0.0252(6)$	$0.0222(5)$	$-0.0031(4)$	$0.0098(4)$	$-0.0023(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-C4	1.7129 (14)	C2-C1	1.3672 (17)
S1-C1	1.7178 (13)	$\mathrm{C} 4-\mathrm{H} 4$	0.9445
$\mathrm{O} 1-\mathrm{C} 2$	1.3597 (15)	C5-C5 ${ }^{\text {i }}$	1.500 (2)
O1-C5	1.4288 (15)	C5-H5A	1.0489
C3-C4	1.3674 (19)	C5-H5B	1.0193
C3-C2	1.4227 (17)	$\mathrm{C} 1-\mathrm{H} 1$	1.0012
C3-H3	0.9989		
C4-S1-C1	92.55 (6)	S1-C4-H4	121.5
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5$	115.12 (10)	O1-C5-C5 ${ }^{\text {i }}$	108.13 (9)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	111.88 (11)	O1-C5-H5A	110.0
C4-C3-H3	125.7	C5- 5 - 5 - 5 A	109.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	122.4	O1-C5-H5B	109.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	127.57 (12)	C5- ${ }^{\text {C } 5-H 5 B ~}$	111.8

supporting information

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.59(12)$	$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	107.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.83(11)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$110.43(10)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$111.56(10)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	132.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	127.0	$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{H} 1$	116.7
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$0.00(18)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	$-0.11(11)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.45(11)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 5 \mathrm{i}$	$-178.84(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$0.06(17)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$-178.66(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$	$178.73(12)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$-0.14(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$0.05(15)$	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.14(10)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O1}^{\mathrm{ii}}$	1.00	2.41	$3.3940(16)$	170

Symmetry code: (ii) $-x+1,-y,-z$.

