Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

David J. Watkin,^a* Loren L. Parry,^a Raquel Soengas,^b Ken Izumori^c and George W. J. Fleet^b

^aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and ^cRare Sugar Research Center, Kagawa University, Mikicho, Kagawa 761-0795, Japan

Correspondence e-mail: david.watkin@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean σ (C–C) = 0.004 Å R factor = 0.049 wR factor = 0.097 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-C-Benzyloxymethyl-2,3:5,6-di-O-isopropylidene-D-allono-1,4-lactone

The crystal structure of the title benzyl ether, $C_{20}H_{26}O_7$, establishes the stereochemistry of the major diacetonide product from the Kiliani reaction of D-psicose. There are two independent molecules in the cell related by a pseudo-twofold screw axis. There are no suitable donors for strong hydrogen bonds: the molecules are simply in van der Waals contact.

Comment

Almost all of the readily available carbohydrate building blocks have linear carbon chains (Bols, 1996; Lichtenthaler & Peters, 2004). However, the Kiliani reaction on ketohexoses provides branched sugar lactones bearing a hydroxymethyl substituent at C-2. Acetonation of the crude mixtures of the resulting lactones gives reasonable yields of crystalline diacetonides (Hotchkiss et al., 2004) which are suitable chiral starting materials for the synthesis of branched sugar mimics (Simone et al., 2005). Ambiguities in the structures of the acetonides arise from (i) the stereochemistry at the quaternary carbon and (ii) the ring size of the ketal protecting groups. The structures of diacetonides derived from three of the four diastereomeric ketohexoses [D-fructose (Cowley et al., 2004; van Ameijde et al., 2004), L-sorbose (Anderson et al., 1977) and D-tagatose (Harding et al., 2005; Shallard-Brown et al., 2004)] have been firmly established by X-ray crystallographic analysis. The fourth diastereomeric ketohexose D-psicose (1) is available from equilibration of D-fructose by D-tagatose 3epimerase (Granstrom et al., 2004; Izumori, 2002; Takeshita et al., 2000; Itoh & Izumori, 1996).

Received 10 August 2005 Accepted 12 August 2005 Online 17 August 2005

 $HOH_{2}C \xrightarrow{OH} OH \\ (i) HOH \\ (i)$

The sequential treatment of D-psicose (1) with sodium cyanide, followed by extraction of the crude lactones with acetone in the presence of sulfuric acid gave, as the major product (Soengas *et al.*, 2005), a diacetonide tentatively assigned as structure (2); although the *cis*-fused diacetonide (2) was easily crystallized, the crystals were not suitable for X-ray crystallographic analysis. However, reaction of (2) with benzyl bromide and sodium hydride in the presence of tetran-butylammonium iodide in dimethylformamide afforded the corresponding benzyl ether (3), which formed crystals for X-;ray suitable analysis. This paper reports the crystal structure of (3) (Fig. 1) which unequivocally establishes the stereo-

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

View of one of the two independent molecules in the asymmetric unit, with atomic displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitary.

Figure 2

View of the two independent molecules superimposed to give the leastsquares best fit between the atom coordinates.

chemistry of the major lactone product (2) from the Kilianiacetonation sequence on D-psicose.

Figure 3 An *a* axis projection of the title compound. The C atoms in one of the independent molecules are coloured green, those in the other blue.

The crystals were in the form of large fragile prisms which crushed easily. A long sample was eventually selected and mounted on a nylon loop using perfluoropolyether oil so that the damaged end of the crystal was outside the X-ray beam. By mounting the crystal approximately parallel to the φ axis, the changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

There are two independent molecules in the asymmetric unit related by a pseudo-twofold screw axis (0.51 - x, 0.46 + y)1.50 - z). The molecules differ mainly in the orientation of the phenyl group (Fig. 2). The structure contains no hydrogen bonds and consists of layers loosely packed perpendicular to the c axis (Fig. 3). Alternate layers contain only molecules of one type.

Experimental

The benzyl ether (3) was crystallized from ethyl acetate-cyclohexane (m.p. 345–346 K); $[\alpha]_{22}^{D}$ – 30.0 (c, 1.06 in chloroform); ν_{max} (NaCl): 1781 (-C=O) cm-1; ¹H NMR (CDCl₃): δ 1.27, 1.40, 1.46 [3 × s, 12 H, 2 × -C(CH₃)₂], 3.73 (*d*, 1H, $J_{2',2''}$ 9.0 Hz, H2'), 3.92–3.97 (*m*, 3H, H6, H6?, H4), 4.12–4.15 (*m*, 1 H, H5), 4.29 (*d*, 1H, J_{2',2"} 9.0 Hz, H2"), 4.57 (s, 2H, -OCH₂Ph), 4.85 (s, 1H, H3); ¹³C NMR (CDCl₃): δ 24.60, 26.07, $26.60, 26.63 [2 \times -C(CH_3)_2], 66.47 (C2'), 69.34 (C6), 73.37 (C5), 73.99$ $(-OCH_2Ph)$, 80.05 (C3), 83.13 (C4), 83.70 (C2), 109.91, 113.33 [2 × -C(CH₃)₂], 127.76, 127.91, 128.29 (-CHAr), 136.70 (-CAr) 174.56 (C1); m/z (NH₃, ES+): 401 (M + Na)⁺.

Crystal	data

$C_{20}H_{26}O_7$	$D_x = 1.252 \text{ Mg m}^{-3}$
$M_r = 378.42$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 3433
a = 10.3839 (2) Å	reflections
b = 10.4574 (2) Å	$\theta = 1 - 30^{\circ}$
c = 19.0310 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 103.8061 \ (9)^{\circ}$	T = 190 K
V = 2006.84 (8) Å ³	Prism, colourless
Z = 4	$1.20 \times 0.75 \times 0.45 \ \mathrm{mm}$

Data collection

Nonius Kappa CCD diffractometer ω scans Absorption correction: multi-scan (DENZO/SCALEPACK: Otwinowski & Minor, 1997)

 $T_{\min} = 0.81, \ T_{\max} = 0.96$ 11499 measured reflections 5664 independent reflections 5635 reflections with $I > -3\sigma(I)$ $R_{\rm int} = 0.027$ $\theta_{\rm max} = 30.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -7 \rightarrow 14$ $l = -26 \rightarrow 26$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F^2) + (0.03P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 0.6P]
$wR(F^2) = 0.097$	where $P = [\max(F_0^2, 0) + 2F_c^2]/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} = 0.001$
5635 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
487 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H = 0.93–98 Å) and isotropic displacement parameters $[U_{iso}(H) = 1.2-1.5U_{eq}(C)]$, after which they were refined with riding constraints. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK*; data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Financial support (to *RS*) provided by the Xunta de Galicia is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J. Simone, M. I. & Soengas, R. (2004). *Acta Cryst.* E60, o2140–o2141.
- Anderson, R. A., Einstein, F. W. B., Hoge, R. & Slessor, K. N. (1977). Acta Cryst. B33, 2780–2783.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bols, M. (1996). *Carbohydrate Building Blocks*. New York: John Wiley & Sons.
- Cowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142–o2143.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.
- Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, 0250–0252.
- Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* 45, 9461– 9464.
- Itoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351-353.
- Izumori, K. (2002). Naturwissenschaften, 89, 120-124.
- Lichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65-90.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet G. W. J. (2004). Acta Cryst. E60, o2163–o2164.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Takeshita, K., Suga, A., Takada, G. & Izumori, K. (2000). J. Biosci. Bioeng. 90, 453–455.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2005). E**61**, o2955–o2957 [https://doi.org/10.1107/S1600536805025791]

2-C-Benzyloxymethyl-2,3:5,6-di-O-isopropylidene-D-allono-1,4-lactone

David J. Watkin, Loren L. Parry, Raquel Soengas, Ken Izumori and George W. J. Fleet

2-C-Benzyloxymethyl-2,3:5,6-di-O-isopropylidene-D-allono-1,4-lactone

Crystal data

 $C_{20}H_{26}O_7$ $M_r = 378.42$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 10.3839 (2) Å b = 10.4574 (2) Å c = 19.0310 (5) Å $\beta = 103.8061 (9)^\circ$ $V = 2006.84 (8) \text{ Å}^3$ Z = 4

Data collection

Nonius Kappa CCD diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.81, T_{\max} = 0.96$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.097$ S = 0.955635 reflections 487 parameters 1 restraint F(000) = 808 $D_x = 1.252 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3433 reflections $\theta = 1-30^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 190 KPrism, colourless $1.20 \times 0.75 \times 0.45 \text{ mm}$

11499 measured reflections 5664 independent reflections 5635 reflections with $I > -3\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 1.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -7 \rightarrow 14$ $l = -26 \rightarrow 26$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.03P)^2 + 0.6P]$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{\max} = 0.001$ $\Delta\rho_{\max} = 0.23$ e Å⁻³ $\Delta\rho_{\min} = -0.17$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6912 (3)	0.6817 (3)	0.89496 (16)	0.0613	
C2	0.6732 (2)	0.7661 (2)	0.95659 (12)	0.0358	
03	0.56299 (14)	0.72111 (16)	0.98275 (10)	0.0429	
C4	0.4476 (2)	0.7902 (2)	0.94647 (13)	0.0393	

C5	0.3862 (2)	0.8461 (2)	1.00390 (12)	0.0342
C6	0.32997 (19)	0.74764 (19)	1.04783 (11)	0.0309
C7	0.17916 (19)	0.7523 (2)	1.01840 (11)	0.0312
C8	0.1574 (2)	0.8728 (2)	0.97093 (12)	0.0351
09	0.27461 (15)	0.92551 (15)	0.96805 (9)	0.0397
010	0.05341 (16)	0.9189 (2)	0.94083(10)	0.0526
011	0.12530 (14)	0.77517(17)	1.07923 (8)	0.0389
H11	0.7692	0.7111	0.8752	0.1072*
C12	0.7311(2)	0.7618(2)	1 14340 (12)	0.0385
H12	0.7122	0.5935	0.9107	0.0202
013	0.7122 0.34809 (15)	0.3933 0.79243 (17)	1 12045 (8)	0.0389
U13	0.6153	0.6811	0.8572	0.0505
C14	0.2355 (3)	0.6250 (3)	1 17066 (15)	0.1070
C14	0.2335(3) 0.2127(3)	0.0250(3)	1.17000 (15)	0.0499
C15	0.2127(3) 0.1155(2)	0.6390(3)	1.19850(15)	0.0393
017	0.1133(2) 0.17700(16)	0.0383(2) 0.62022(18)	0.9/480(13)	0.0409
017 C18	0.17799(10)	0.03022(18)	0.91001(9)	0.0473
C18	0.1019(3)	0.5727(3)	0.85246 (14)	0.0523
C19	0.1805 (3)	0.5838 (2)	0.79633 (13)	0.0493
C20	0.1947 (4)	0.7012(3)	0.76556 (17)	0.0745
C21	0.2743 (5)	0.7150 (4)	0.71718 (19)	0.0858
C22	0.3377 (4)	0.6098 (4)	0.69765 (17)	0.0723
C23	0.3234 (4)	0.4942 (3)	0.72696 (19)	0.0731
C24	0.2461 (3)	0.4807 (3)	0.77668 (17)	0.0645
C25	0.5008 (2)	0.8934 (3)	0.90304 (16)	0.0541
O26	0.63821 (16)	0.89243 (16)	0.93251 (10)	0.0468
C27	0.7940 (2)	0.7712 (3)	1.01804 (15)	0.0502
H41	0.3846	0.7327	0.9142	0.0519*
H51	0.4571	0.8998	1.0360	0.0470*
H61	0.3665	0.6607	1.0437	0.0466*
C101	-0.1863 (3)	0.2800 (3)	0.60522 (15)	0.0542
C102	-0.1537 (2)	0.3374 (2)	0.53881 (12)	0.0337
O103	-0.03441 (14)	0.28084 (15)	0.52740 (10)	0.0430
C104	0.0740 (2)	0.3658 (2)	0.55386 (13)	0.0365
C105	0.1294 (2)	0.40541 (19)	0.48991 (13)	0.0371
C106	0.18060 (19)	0.29669 (19)	0.45118 (11)	0.0303
C107	0.33235 (19)	0.30000 (18)	0.47837 (11)	0.0296
C108	0.3581 (2)	0.4284 (2)	0.51802 (12)	0.0360
O109	0.24325 (16)	0.48850 (14)	0.51772 (10)	0.0434
O110	0.46329 (17)	0.47463 (18)	0.54578 (10)	0.0520
0111	0.38350 (15)	0.30560 (16)	0.41557 (8)	0.0392
C112	0.2743(2)	0 2868 (2)	0.35378(12)	0.0404
0113	0.16033(17)	0.32835(17)	0 37628 (9)	0.0437
C114	0.2634(3)	0.1469(2)	0.33179(14)	0.0505
C115	0.203 + (3)	0.3743(3)	0.29361(16)	0.0636
C116	0.2950(3)	0.1928(2)	0.22501(10) 0.52760(11)	0.0325
0117	0.3732(2) 0.33834(14)	0.1920(2) 0.20002(15)	0.52700 (11)	0.0323
C118	0.3303 + (1+) 0.3000 (2)	0.20072(13) 0.1202(2)	0.50021(0) 0.64651(11)	0.0307
C110	0.3999(2) 0.2112(2)	0.1202(2)	0.07031(11) 0.60815(12)	0.0336
U117	0.3113(2)	0.11102(19)	0.09013 (12)	0.0550

C120	0.3578 (2)	0.1389 (2)	0.77052 (12)	0.0412
C121	0.2762 (3)	0.1263 (3)	0.81823 (14)	0.0526
C122	0.1479 (3)	0.0854 (3)	0.79376 (16)	0.0584
C123	0.0992 (3)	0.0588 (3)	0.72118 (18)	0.0561
C124	0.1804 (2)	0.0716 (2)	0.67285 (14)	0.0436
C125	0.0123 (2)	0.4789 (2)	0.58536 (15)	0.0459
0126	-0.12454(15)	0.47056 (15)	0.54808 (9)	0.0398
C127	-0.2637(2)	0.3203 (2)	0.47264 (14)	0.0447
H141	0.2995	0.6122	1.2168	0.0839*
H142	0.1494	0.6041	1.1787	0.0838*
H143	0.2526	0.5660	1.1356	0.0836*
H151	0.2850	0.8572	1.2396	0.1017*
H152	0.1340	0.8423	1.2121	0.1012*
H153	0.2073	0.9437	1.1765	0.1018*
H161	0.1271	0.5628	1 0073	0.0582*
H162	0.0161	0.6520	0.9578	0.0579*
H181	0.0150	0.6230	0.8367	0.0714*
H182	0.0768	0.4857	0.8613	0.0722*
H201	0.1497	0.7703	0.7774	0.0980*
H211	0.2841	0.7975	0.6995	0.1165*
H221	0.3878	0.6180	0.6534	0.0961*
H231	0.3613	0.4222	0.7119	0.0901
H241	0.2398	0.3082	0.7972	0.1003
H251	0.4621	0.9758	0.9098	0.0692
H257	0.4021	0.9758	0.9098	0.0691*
H232	0.4751	0.8727	1.0567	0.0091
11271 11272	0.7074	0.0179	1.0007	0.0819
H272	0.8037	0.6850	1.0007	0.0820
H273	-0.2671	0.000	0.6144	0.0821*
H1011	-0.2071	0.3219	0.0144	0.0981*
H1012	-0.2008	0.2928	0.0452	0.0979*
H1013	-0.2008	0.1001	0.3992	0.0982
H1041	0.1422	0.3215	0.3924	$0.04/8^{*}$
H1051	0.0575	0.4492	0.4538	0.0514*
H1001	0.1390	0.2149	0.4590	0.0428^{+}
H1141	0.3410	0.1196	0.3155	0.0940*
H1142	0.2614	0.0916	0.3/1/	0.0936*
H1143	0.1889	0.1311	0.2915	0.0930*
HII5I	0.3/60	0.3612	0.2829	0.1135*
H1152	0.2926	0.4627	0.3115	0.113/*
H1153	0.2242	0.3646	0.2522	0.1139*
HII6I	0.4930	0.2011	0.5413	0.0455*
H1162	0.3764	0.1091	0.5006	0.0447*
H1181	0.4899	0.1526	0.6716	0.0480*
H1182	0.4170	0.0356	0.6273	0.0484*
H1201	0.4422	0.1657	0.7873	0.0534*
H1211	0.3084	0.1499	0.8666	0.0663*
H1221	0.0969	0.0750	0.8277	0.0864*
H1231	0.0120	0.0326	0.7035	0.0778*

supporting information

0.1458	0.0568	0.6234	0.0614*
0.0319	0.4686	0.6389	0.0615*
0.0532	0.5618	0.5746	0.0617*
-0.3419	0.3661	0.4805	0.0712*
-0.2812	0.2311	0.4641	0.0709*
-0.2314	0.3561	0.4323	0.0713*
	0.1458 0.0319 0.0532 -0.3419 -0.2812 -0.2314	0.14580.05680.03190.46860.05320.5618-0.34190.3661-0.28120.2311-0.23140.3561	0.14580.05680.62340.03190.46860.63890.05320.56180.5746-0.34190.36610.4805-0.28120.23110.4641-0.23140.35610.4323

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.078 (2)	0.0607 (17)	0.0530 (16)	0.0116 (15)	0.0308 (15)	0.0019 (13)
C2	0.0313 (10)	0.0382 (10)	0.0431 (11)	0.0027 (8)	0.0194 (9)	0.0076 (9)
O3	0.0283 (7)	0.0490 (9)	0.0559 (10)	0.0048 (6)	0.0189 (7)	0.0216 (8)
C4	0.0284 (9)	0.0488 (12)	0.0433 (11)	0.0027 (9)	0.0136 (9)	0.0113 (10)
C5	0.0257 (9)	0.0366 (10)	0.0410 (11)	-0.0003 (7)	0.0093 (8)	0.0066 (8)
C6	0.0271 (9)	0.0338 (9)	0.0334 (10)	0.0020 (7)	0.0102 (8)	0.0052 (8)
C7	0.0254 (8)	0.0364 (9)	0.0339 (10)	0.0029 (7)	0.0114 (7)	0.0049 (8)
C8	0.0312 (10)	0.0398 (10)	0.0368 (11)	0.0073 (8)	0.0131 (8)	0.0074 (8)
09	0.0354 (8)	0.0352 (7)	0.0514 (9)	0.0055 (6)	0.0163 (7)	0.0139 (7)
O10	0.0369 (9)	0.0685 (12)	0.0545 (10)	0.0182 (8)	0.0147 (8)	0.0266 (9)
O11	0.0327 (7)	0.0530 (9)	0.0346 (7)	0.0110 (7)	0.0147 (6)	0.0101 (7)
C12	0.0371 (10)	0.0473 (12)	0.0330 (10)	0.0087 (9)	0.0124 (8)	0.0100 (9)
O13	0.0347 (7)	0.0498 (9)	0.0324 (7)	-0.0016 (7)	0.0082 (6)	0.0048 (7)
C14	0.0446 (13)	0.0526 (14)	0.0568 (15)	0.0087 (11)	0.0204 (12)	0.0253 (12)
C15	0.080 (2)	0.0647 (17)	0.0388 (13)	0.0124 (15)	0.0235 (13)	0.0008 (12)
C16	0.0331 (11)	0.0443 (12)	0.0484 (13)	-0.0063 (9)	0.0156 (10)	-0.0027 (10)
O17	0.0386 (8)	0.0621 (11)	0.0432 (9)	-0.0114 (8)	0.0124 (7)	-0.0155 (8)
C18	0.0537 (14)	0.0534 (14)	0.0440 (13)	-0.0082 (12)	0.0000 (11)	-0.0052 (11)
C19	0.0648 (16)	0.0427 (12)	0.0341 (12)	0.0026 (11)	-0.0003 (11)	-0.0018 (9)
C20	0.128 (3)	0.0489 (15)	0.0520 (17)	0.0237 (18)	0.0317 (19)	0.0098 (13)
C21	0.148 (4)	0.061 (2)	0.0553 (19)	0.007 (2)	0.039 (2)	0.0144 (16)
C22	0.097 (3)	0.076 (2)	0.0456 (16)	0.0005 (19)	0.0204 (16)	-0.0011 (15)
C23	0.089 (2)	0.0637 (19)	0.068 (2)	0.0196 (18)	0.0212 (18)	-0.0010 (16)
C24	0.084 (2)	0.0454 (14)	0.0615 (18)	0.0088 (14)	0.0117 (16)	0.0011 (13)
C25	0.0395 (12)	0.0686 (17)	0.0599 (16)	0.0118 (12)	0.0230 (12)	0.0316 (14)
O26	0.0361 (8)	0.0436 (9)	0.0670 (12)	0.0043 (7)	0.0249 (8)	0.0207 (8)
C27	0.0363 (11)	0.0541 (14)	0.0593 (15)	0.0000 (11)	0.0094 (11)	0.0084 (12)
C101	0.0612 (16)	0.0611 (15)	0.0474 (14)	0.0054 (13)	0.0267 (12)	0.0070 (12)
C102	0.0303 (10)	0.0327 (9)	0.0409 (11)	0.0050 (7)	0.0139 (8)	-0.0020 (8)
O103	0.0314 (7)	0.0345 (7)	0.0682 (11)	0.0012 (6)	0.0221 (7)	-0.0129 (8)
C104	0.0286 (9)	0.0349 (10)	0.0476 (12)	0.0033 (8)	0.0123 (9)	-0.0044 (9)
C105	0.0321 (10)	0.0272 (9)	0.0524 (13)	0.0042 (8)	0.0107 (9)	0.0002 (9)
C106	0.0284 (9)	0.0278 (8)	0.0348 (10)	0.0006 (7)	0.0076 (8)	0.0029 (7)
C107	0.0284 (9)	0.0292 (9)	0.034 (1)	-0.0004 (7)	0.0133 (8)	0.0033 (7)
C108	0.0369 (11)	0.0317 (9)	0.0430 (11)	-0.0067 (8)	0.0165 (9)	0.0016 (8)
O109	0.0423 (9)	0.0258 (7)	0.0646 (11)	-0.0037 (6)	0.0180 (8)	-0.0051 (7)
O110	0.0431 (9)	0.0531 (10)	0.0629 (12)	-0.0206 (8)	0.0187 (8)	-0.0122 (9)
O111	0.0383 (8)	0.0483 (9)	0.0354 (8)	-0.0037 (7)	0.0177 (7)	0.0062 (6)

supporting information

C112	0.0479 (12)	0.0412 (11)	0.0338 (10)	-0.0025 (10)	0.0130 (9)	0.0056 (9)
0113	0.0428 (9)	0.0503 (9)	0.0357 (8)	0.0075 (7)	0.0049 (7)	0.0058 (7)
C114	0.0631 (16)	0.0447 (13)	0.0480 (14)	-0.0056 (11)	0.0220 (12)	-0.0037 (11)
C115	0.092 (2)	0.0594 (17)	0.0422 (14)	-0.0056 (16)	0.0214 (14)	0.0162 (12)
C116	0.0292 (9)	0.0361 (9)	0.0354 (10)	0.0062 (7)	0.0141 (8)	0.0056 (8)
0117	0.0380 (8)	0.0414 (8)	0.0346 (7)	0.0132 (6)	0.0163 (6)	0.0118 (6)
C118	0.0330 (10)	0.0402 (10)	0.0331 (10)	0.0080 (8)	0.0056 (8)	0.0072 (8)
C119	0.0369 (10)	0.0304 (9)	0.0338 (10)	0.0053 (8)	0.0091 (8)	0.0066 (8)
C120	0.0389 (11)	0.0478 (12)	0.0345 (11)	0.0105 (9)	0.0038 (9)	0.0045 (9)
C121	0.0577 (15)	0.0671 (16)	0.0345 (11)	0.0239 (13)	0.0142 (11)	0.0094 (11)
C122	0.0568 (16)	0.0704 (18)	0.0559 (16)	0.0205 (14)	0.0294 (14)	0.0281 (14)
C123	0.0424 (13)	0.0590 (16)	0.0701 (19)	-0.0047 (12)	0.0200 (13)	0.0119 (14)
C124	0.0415 (12)	0.0479 (12)	0.0411 (12)	-0.0063 (10)	0.0097 (10)	0.0014 (10)
C125	0.0308 (10)	0.0470 (12)	0.0586 (14)	0.0041 (9)	0.0081 (10)	-0.0192 (11)
O126	0.0301 (7)	0.0334 (7)	0.0569 (10)	0.0032 (6)	0.0122 (7)	-0.0111 (7)
C127	0.0435 (12)	0.0371 (11)	0.0496 (13)	-0.0023 (9)	0.0036 (10)	0.0009 (10)

Geometric parameters (Å, °)

C1—C2	1.515 (4)	C101—C102	1.509 (3)
C1—H11	1.018	C101—H1011	0.999
C1—H12	0.978	C101—H1012	0.957
С1—Н13	0.932	C101—H1013	0.975
C2—O3	1.432 (2)	C102—O103	1.435 (2)
C2—O26	1.417 (3)	C102—O126	1.427 (3)
C2—C27	1.498 (3)	C102—C127	1.496 (3)
O3—C4	1.428 (3)	O103—C104	1.428 (3)
C4—C5	1.509 (3)	C104—C105	1.522 (3)
C4—C25	1.540 (3)	C104—C125	1.534 (3)
C4—H41	0.987	C104—H1041	1.003
С5—С6	1.527 (3)	C105—C106	1.518 (3)
С5—О9	1.456 (3)	C105—O109	1.461 (3)
C5—H51	1.008	C105—H1051	0.998
C6—C7	1.533 (3)	C106—C107	1.537 (3)
C6—O13	1.429 (2)	C106—O113	1.429 (2)
C6—H61	0.995	C106—H1061	0.985
С7—С8	1.535 (3)	C107—C108	1.532 (3)
C7—O11	1.421 (2)	C107—O111	1.420 (2)
C7—C16	1.511 (3)	C107—C116	1.506 (3)
С8—О9	1.349 (2)	C108—O109	1.347 (3)
C8—O10	1.197 (3)	C108—O110	1.196 (3)
O11—C12	1.441 (3)	O111—C112	1.439 (3)
C12—O13	1.422 (2)	C112—O113	1.419 (3)
C12—C14	1.518 (3)	C112—C114	1.518 (3)
C12—C15	1.503 (4)	C112—C115	1.517 (3)
C14—H141	0.976	C114—H1141	0.974
C14—H142	0.967	C114—H1142	0.959
C14—H143	0.956	C114—H1143	0.964

C15—H151	0.948	С115—Н1151	0.934
C15—H152	0.933	C115—H1152	0.986
C15—H153	0.974	C115—H1153	0.939
C16—O17	1.414 (3)	C116—O117	1.418 (2)
C16—H161	0.992	C116—H1161	0.991
C16—H162	1.016	C116—H1162	1.010
O17—C18	1.420 (3)	O117—C118	1.419 (2)
C18—C19	1.496 (4)	C118—C119	1.501 (3)
C18—H181	1.025	C118—H1181	1.001
C18—H182	0.972	C118—H1182	0.989
C19 - C20	1 383 (4)	$C_{119} - C_{120}$	1.377(3)
C19 - C20	1.303(4) 1 374(4)	$C_{119} - C_{124}$	1.377(3)
C_{10} C_{21}	1.374(4) 1.384(5)	C_{120} C_{121}	1.392(3)
$C_{20} = C_{21}$	0.017	C120 - C121	1.589 (5)
$C_{20} = 11201$	1 279 (5)	C_{120} -111201 C_{122}	0.902
$C_{21} = C_{22}$	1.578 (5)	C121 - C122	1.371(4)
C21—H211	0.941	С121—П1211	0.934
C22—C23	1.334 (3)	C122—C123	1.381 (4)
C22—H221	0.930	C122—H1221	0.934
C23—C24	1.386 (5)	C123—C124	1.395 (3)
C23—H231	0.927	C123—H1231	0.929
C24—H241	0.955	C124—H1241	0.937
C25—O26	1.403 (3)	C125—O126	1.431 (3)
C25—H251	0.973	С125—Н1251	0.996
С25—Н252	0.989	С125—Н1252	1.008
C27—H271	0.976	C127—H1271	0.984
C27—H272	0.978	C127—H1272	0.957
С27—Н273	0.983	С127—Н1273	0.983
C2—C1—H11	111.4	C102—C101—H1011	109.8
C2—C1—H12	111.8	C102—C101—H1012	108.0
H11—C1—H12	105.1	H1011—C101—H1012	110.8
C2—C1—H13	111.3	C102—C101—H1013	110.7
H11—C1—H13	108.6	H1011—C101—H1013	109.8
H12—C1—H13	108.4	H1012-C101-H1013	107.7
C1—C2—O3	109.6 (2)	C101—C102—O103	109.69 (19)
C1—C2—O26	111.2 (2)	C101—C102—O126	111.6 (2)
O3—C2—O26	104.72 (16)	O103—C102—O126	104.83 (16)
C1-C2-C27	1130(2)	C101-C102-C127	112.2.(2)
03-C2-C27	109.27(19)	0103 - C102 - C127	109.69(18)
0.26 - 0.2 - 0.27	108.7(2)	0126-C102-C127	108 53 (18)
$C_2 = C_2 = C_4$	108.29(16)	C102 - 0102 - C104	100.05(10) 109.05(15)
03-04-05	107 26 (19)	0103 - C104 - C105	107 69 (19)
03-64-625	104.32 (16)	0103 - C104 - C125	104 46 (16)
$C_{5} - C_{4} - C_{25}$	117.52(10)	C105 - C104 - C125	112 05 (10)
$C_3 = C_4 = C_{23}$	112.0 (2)	$0103 \ C104 \ H1041$	100 2
$C_5 = C_4 = H_{41}$	110.4	C105 - C104 - 111041 C105 - C104 - 111041	109.5
$C_{2} = C_{4} = 11_{41}$	111.7	$C_{103} - C_{104} - 111041$ $C_{125} - C_{104} - 11041$	112.0
$C_{2} = C_{4} = C_{4}$	111.2	$C_{12} = C_{104} = C_{104} = C_{104}$	111.0 115.29(17)
U4-U3-U0	114./2(10)	U104-U103-U100	113.28(1/)

C4—C5—O9	107.97 (18)	C104—C105—O109	107.44 (19)
C6—C5—O9	106.00 (15)	C106—C105—O109	105.91 (16)
C4—C5—H51	106.3	C104—C105—H1051	108.2
С6—С5—Н51	111.3	C106—C105—H1051	107.5
O9—C5—H51	110.5	O109—C105—H1051	112.6
C5—C6—C7	105.60 (16)	C105—C106—C107	105.63 (16)
C5—C6—O13	109.23 (17)	C105—C106—O113	108.98 (17)
C7—C6—O13	103.30 (15)	C107—C106—O113	103.04 (15)
C5—C6—H61	111.7	C105—C106—H1061	110.9
C7—C6—H61	112.1	C107—C106—H1061	114.4
013-C6-H61	114.2	O113—C106—H1061	113.4
C6-C7-C8	103 62 (16)	C106-C107-C108	103 30 (16)
C6-C7-011	105.02 (16)	C106 - C107 - O111	106.07 (16)
C8-C7-O11	108.09(16)	C108 - C107 - O111	100.07(10) 108.78(15)
C6-C7-C16	116 74 (17)	C106-C107-C116	116 72 (15)
C8-C7-C16	109.94(18)	C108 - C107 - C116	110.72(13) 110.32(18)
011 - 07 - 016	111 94 (16)	0111 - C107 - C116	110.32(10)
C7 - C8 - O9	110.60 (17)	C107 - C108 - O109	110.89(17)
C7 - C8 - O10	127.0(2)	C107 - C108 - O107	110.02(17) 127.3(2)
0^{9} C8 010	127.0(2) 122.4(2)	0109 C108 0110	127.3(2) 1218(2)
$C_{5} = C_{8} = C_{10}$	111 86 (16)	$C_{105} = C_{108} = C_{108}$	121.8(2) 111.30(16)
$C_{7} = 011 = 012$	107.78 (15)	$C_{103} = O_{103} = C_{103}$	107.57(15)
$C_{1} = 011 = 012$	107.78 (15)	0111 0112 0113	107.37(13) 105.24(17)
011 - 012 - 013	104.00(10)	0111 - C112 - C114	103.24(17)
011 - 012 - 014	109.0(2) 111.07(18)	0112 - C112 - C114	110.3(2)
013 - 012 - 014	111.07(10) 100.02(10)	0113 - C112 - C114	111.4(2) 108.2(2)
011 - 012 - 015	109.02(19) 108.7(2)	0112 - C112 - C115	108.2(2)
$C_{14} = C_{12} = C_{15}$	106.7(2) 113.4(2)	$C_{114} = C_{112} = C_{115}$	108.3(2)
$C_{14} - C_{12} - C_{13}$	113.4(2) 107.25(16)	$C_{114} - C_{112} - C_{113}$	112.0(2)
$C_{12} = C_{13} = C_{12}$	107.55 (10)	$C_{110} = 0_{113} = C_{112}$	107.13 (10)
C_{12} C_{14} H_{141}	113.3	C_{112} C_{114} H_{1141}	111.0
$U_{12} - U_{14} - H_{142}$	106.2	C112 - C114 - D1142	112.2
$\Pi 141 - C14 - \Pi 142$	100.3	H1141 - C114 - H1142	104.5
U12—U14—П143	111.4		112.2
H141 - C14 - H143	109.8	H1141—C114—H1143	105.3
$\Pi 142 - C14 - \Pi 143$	107.5	H1142-C114-H1143	111.2
С12—С15—Н151	110.8		111.8
С12—С15—П152	109.3		100.9
HI51—CI5—HI52	109.7	HII5I-CII5-HII52	107.4
С12—С15—П155 11151 С15 11152	108.8		110.7
HI51—CI5—HI53	109.0	H1151—C115—H1153	111.1
HI52—CI5—HI53	109.0	HII52—CII5—HII53	108.7
C/-C16-O1/	104.76 (16)		104.97 (15)
C/-C16-H161	108.3	C10/-C116-H1161	111.3
UI/-UI6-HI6I	115.5	UII/-UII0-HII0I	112.4
U = H162	110.0	C10/—C116—H1162	109.1
U1/	112.3	U11/—U116—H1162	113.5
H161—C16—H162	105.9	H1161—C116—H1162	105.7
C16—O17—C18	115.72 (18)	C116—O117—C118	113.76 (15)

O17—C18—C19	107.1 (2)	O117—C118—C119	108.54 (16)
O17—C18—H181	107.8	O117—C118—H1181	111.5
C19—C18—H181	110.1	C119—C118—H1181	111.0
O17—C18—H182	111.4	O117—C118—H1182	109.3
C19—C18—H182	114.2	C119—C118—H1182	112.1
H181—C18—H182	106.1	H1181—C118—H1182	104.4
C18—C19—C20	120.2 (3)	C118—C119—C120	121.2 (2)
C18—C19—C24	121.6 (3)	C118—C119—C124	119.5 (2)
C20—C19—C24	118.2 (3)	C120—C119—C124	119.3 (2)
C19—C20—C21	121.0 (3)	C119—C120—C121	120.7 (2)
C19—C20—H201	118.9	C119—C120—H1201	119.9
C21—C20—H201	120.1	C121—C120—H1201	119.3
C20—C21—C22	119.8 (3)	C120—C121—C122	120.2 (3)
C20—C21—H211	117.8	C120—C121—H1211	119.2
C22—C21—H211	122.5	C122—C121—H1211	120.5
C21—C22—C23	119.6 (3)	C121—C122—C123	119.8 (2)
C21—C22—H221	119.9	C121—C122—H1221	117.9
C23—C22—H221	120.4	C123—C122—H1221	122.3
C22—C23—C24	120.7 (3)	C122—C123—C124	120.4 (3)
С22—С23—Н231	120.1	C122—C123—H1231	120.9
C24—C23—H231	119.1	C124—C123—H1231	118.7
C23—C24—C19	120.7 (3)	C123—C124—C119	119.6 (2)
C23—C24—H241	118.6	C123—C124—H1241	120.0
C19—C24—H241	120.7	C119—C124—H1241	120.3
C4—C25—O26	103.96 (18)	C104—C125—O126	102.55 (18)
C4—C25—H251	109.8	C104—C125—H1251	108.3
O26—C25—H251	111.5	O126—C125—H1251	115.9
C4—C25—H252	109.9	C104—C125—H1252	110.4
O26—C25—H252	113.9	O126—C125—H1252	111.6
H251—C25—H252	107.8	H1251—C125—H1252	107.9
C2—O26—C25	107.06 (18)	C125—O126—C102	106.07 (17)
С2—С27—Н271	105.8	C102—C127—H1271	107.8
С2—С27—Н272	107.6	C102—C127—H1272	109.6
H271—C27—H272	112.5	H1271—C127—H1272	111.7
С2—С27—Н273	111.3	С102—С127—Н1273	106.1
H271—C27—H273	109.4	H1271—C127—H1273	112.4
H272—C27—H273	110.1	H1272—C127—H1273	109.0