Download citation
Download citation
link to html
The title compound, [Pd(NO3)2(C2H8N2)], forms an infinite two-dimensional sheet-like motif, propagated by inter­molecular hydrogen bonds between the amino groups of the ethane-1,2-diamine ligands and the nitrate O atoms. There are two complex mol­ecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027224/ac6192sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027224/ac6192Isup2.hkl
Contains datablock I

CCDC reference: 287427

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.016
  • wR factor = 0.043
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.514 0.690 Tmin and Tmax expected: 0.445 0.690 RR = 1.156 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.17 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.69
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Our group has long been interested in the use of metal complexes as components for the construction of large supramolecular architectures (Lindoy & Atkinson, 2000). In particular, we are interested in the construction and chemistry of metallocyclic systems (Clegg et al., 2004, 2005). The title compound, (I), has found extensive use as a precursor in the preparation of cyclic metallo-supramolecular structures (Fujita et al., 2005). Crystals suitable for this study were obtained in the course of our investigation into the interactions of N-donor ligand systems (Bray et al., 2005) with (I).

An ORTEP (Farrugia, 1997) representation of (I) is given in Fig. 1. As expected, each PdII ion has a geometry close to an ideal square-plane (Table 1). The N donor atoms of the bidentate ethane-1,2-diamine ligand (en) occupy two coordination sites in a typical five-membered chelate arrangment. The remaining coordination sites are occupied by nitrate O atoms of two nitrate ligands.

The asymmetric unit contains two of these complexes, which pack via intermolecular hydrogen bonds between the NH2 groups of the en ligands and the O atoms of the nitrate ligands. Hydrogen-bond details are provided in Table 2.

The intermolecular hydrogen bonds propagate in two dimensions, forming an infinite sheet-like motif that lies parallel to the bc plane (Fig. 2). Each of the N donor atoms forms hydrogen bonds to (at least) two O acceptor atoms, with only atoms O5 and O8 not involved in close interactions. The sheets stack along the a axis, as shown in the crystal packing diagram (Fig. 3).

Experimental top

The title compound was prepared from cis-[Pd(en)Cl2] and identified as the desired product by comparison with literature data (Fujita et al., 1996; Tercero-Moreno et al., 1996). Crystals of (I) suitable for the X-ray diffraction study were isolated from methanol after several days of slow evaporation. All reagents were purchased from Sigma–Aldrich.

Refinement top

C-bound H atoms were included in idealized positions and refined using a riding-model approximation, with methylene C—H bond lengths fixed at 0.99 Å. N-bound H atoms were located in the difference Fourier map and refined with bond-length restraints of 0.90(s.u.?) Å. Uiso(H) values were fixed at 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A representation of the asymmetric unit of (I), shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of part of one of the two-dimensional sheets formed by hydrogen bonding. The sheets extend infinitely in the bc plane and stack on top of each other along the a axis.
[Figure 3] Fig. 3. A view of (I), along the b axis. Alternate two-dimensional sheets are shown in red and green. There are no hydrogen-bonding interactions connecting adjacent layers. Blue arrows indicate ?
(Ethane-1,2-diamine)dinitratopalladium(II) top
Crystal data top
C2H8N4O6PdF(000) = 1136
Mr = 290.52Dx = 2.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 10524 reflections
a = 16.8478 (6) Åθ = 2.4–28.3°
b = 7.7746 (3) ŵ = 2.32 mm1
c = 13.0702 (5) ÅT = 150 K
β = 109.816 (1)°Needle, colourless
V = 1610.62 (10) Å30.51 × 0.30 × 0.16 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3881 independent reflections
Radiation source: sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 2222
Tmin = 0.514, Tmax = 0.690k = 1010
15349 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.7251P]
where P = (Fo2 + 2Fc2)/3
3881 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 1.08 e Å3
8 restraintsΔρmin = 0.40 e Å3
Crystal data top
C2H8N4O6PdV = 1610.62 (10) Å3
Mr = 290.52Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.8478 (6) ŵ = 2.32 mm1
b = 7.7746 (3) ÅT = 150 K
c = 13.0702 (5) Å0.51 × 0.30 × 0.16 mm
β = 109.816 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3554 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.690Rint = 0.019
15349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0168 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.08 e Å3
3881 reflectionsΔρmin = 0.40 e Å3
259 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Crystream and data were collected at this temperature. 234 standard reflections were obtained by recollecting the first 50 CCD frames at the end of data collection. They were then used for a decay correction, giving an overall decay of 0.33%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07726 (11)0.4163 (2)0.32175 (15)0.0241 (4)
H2A0.06790.54060.30550.029*
H2B0.03750.37740.35800.029*
C20.06314 (11)0.3164 (2)0.21841 (14)0.0242 (3)
H3A0.06190.19160.23270.029*
H3B0.00850.34930.16340.029*
C30.44537 (11)0.9163 (2)0.33465 (15)0.0219 (4)
H6A0.49900.88290.39150.026*
H6B0.44961.03800.31480.026*
C40.42840 (10)0.8026 (2)0.23646 (14)0.0201 (3)
H7A0.47020.82510.20000.024*
H7B0.43250.68000.25820.024*
N10.16543 (9)0.38548 (19)0.39314 (12)0.0183 (3)
H10.1764 (13)0.454 (3)0.4501 (15)0.027*
H20.1697 (13)0.280 (2)0.4141 (17)0.027*
N20.13345 (9)0.35657 (19)0.17776 (12)0.0196 (3)
H30.1183 (14)0.447 (2)0.1329 (17)0.029*
H40.1420 (13)0.265 (2)0.1422 (17)0.029*
N30.31257 (9)0.38063 (18)0.13002 (12)0.0193 (3)
N40.40206 (9)0.39355 (17)0.47206 (12)0.0189 (3)
N50.37339 (10)0.89330 (19)0.37507 (12)0.0194 (3)
H50.3772 (13)0.969 (3)0.4257 (16)0.029*
H60.3761 (13)0.791 (2)0.4044 (17)0.029*
N60.34149 (9)0.84238 (18)0.16138 (11)0.0180 (3)
H70.3219 (12)0.749 (2)0.1230 (16)0.027*
H80.3493 (14)0.919 (2)0.1163 (17)0.027*
N70.10544 (9)0.83412 (18)0.08766 (11)0.0199 (3)
N80.18726 (9)0.92392 (16)0.41271 (12)0.0186 (3)
O10.28288 (8)0.23489 (15)0.12090 (11)0.0277 (3)
O20.34835 (9)0.44032 (19)0.06988 (11)0.0310 (3)
O30.30658 (8)0.48244 (15)0.20513 (10)0.0236 (3)
O40.33690 (7)0.49827 (14)0.43624 (9)0.0197 (2)
O50.40964 (8)0.27554 (15)0.41420 (11)0.0260 (3)
O60.45183 (8)0.42377 (15)0.56363 (11)0.0270 (3)
O70.10879 (8)0.72811 (16)0.15929 (11)0.0274 (3)
O80.04821 (8)0.84143 (17)0.00052 (11)0.0300 (3)
O90.16642 (7)0.94747 (15)0.10590 (10)0.0196 (2)
O100.21827 (8)0.78038 (15)0.43498 (11)0.0268 (3)
O110.14757 (8)0.99788 (17)0.46451 (10)0.0286 (3)
O120.19575 (7)1.00942 (15)0.33215 (9)0.0209 (2)
Pd10.239096 (8)0.419159 (14)0.302404 (10)0.01465 (4)
Pd20.266618 (7)0.911995 (14)0.246167 (10)0.01437 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (8)0.0318 (9)0.0225 (9)0.0015 (6)0.0091 (7)0.0010 (7)
C20.0182 (8)0.0308 (9)0.0219 (8)0.0041 (7)0.0048 (7)0.0008 (7)
C30.0166 (8)0.0205 (8)0.0276 (9)0.0012 (6)0.0062 (7)0.0034 (6)
C40.0183 (8)0.0187 (7)0.0238 (8)0.0018 (6)0.0080 (7)0.0003 (6)
N10.0208 (7)0.0199 (6)0.0151 (7)0.0003 (5)0.0072 (6)0.0006 (5)
N20.0231 (7)0.0202 (7)0.0152 (6)0.0023 (6)0.0059 (6)0.0023 (5)
N30.0178 (7)0.0232 (7)0.0174 (7)0.0038 (5)0.0066 (6)0.0037 (5)
N40.0183 (7)0.0180 (6)0.0209 (7)0.0011 (5)0.0074 (6)0.0013 (5)
N50.0211 (7)0.0199 (7)0.0164 (7)0.0010 (5)0.0053 (6)0.0019 (5)
N60.0215 (7)0.0169 (7)0.0166 (6)0.0007 (5)0.0079 (6)0.0012 (5)
N70.0187 (7)0.0207 (7)0.0209 (7)0.0025 (5)0.0075 (6)0.0013 (5)
N80.0196 (7)0.0197 (7)0.0163 (7)0.0032 (5)0.0059 (6)0.0010 (5)
O10.0347 (7)0.0199 (6)0.0305 (7)0.0016 (5)0.0137 (6)0.0052 (5)
O20.0287 (7)0.0449 (8)0.0258 (7)0.0027 (6)0.0174 (6)0.0089 (6)
O30.0315 (7)0.0203 (6)0.0252 (6)0.0074 (5)0.0177 (5)0.0049 (5)
O40.0174 (5)0.0187 (5)0.0206 (6)0.0016 (4)0.0033 (5)0.0043 (4)
O50.0310 (7)0.0203 (6)0.0286 (7)0.0035 (5)0.0125 (6)0.0060 (5)
O60.0240 (7)0.0294 (7)0.0223 (6)0.0010 (5)0.0008 (5)0.0024 (5)
O70.0306 (7)0.0239 (6)0.0277 (7)0.0027 (5)0.0097 (6)0.0063 (5)
O80.0239 (7)0.0352 (7)0.0239 (6)0.0011 (5)0.0011 (5)0.0016 (6)
O90.0180 (6)0.0219 (5)0.0183 (6)0.0011 (5)0.0055 (5)0.0039 (5)
O100.0335 (7)0.0197 (6)0.0281 (6)0.0026 (5)0.0116 (6)0.0069 (5)
O110.0320 (7)0.0343 (7)0.0263 (6)0.0002 (6)0.0186 (6)0.0047 (6)
O120.0272 (6)0.0196 (6)0.0196 (6)0.0043 (5)0.0129 (5)0.0036 (5)
Pd10.01615 (7)0.01443 (7)0.01398 (7)0.00212 (4)0.00591 (5)0.00176 (4)
Pd20.01580 (7)0.01446 (7)0.01336 (7)0.00110 (4)0.00559 (5)0.00127 (4)
Geometric parameters (Å, º) top
C1—N11.482 (2)N3—O21.2319 (19)
C1—C21.505 (2)N3—O31.2914 (19)
C1—H2A0.9900N4—O51.2230 (18)
C1—H2B0.9900N4—O61.2289 (19)
C2—N21.486 (2)N4—O41.3185 (17)
C2—H3A0.9900N5—Pd22.0102 (15)
C2—H3B0.9900N5—H50.873 (15)
C3—N51.489 (2)N5—H60.875 (15)
C3—C41.504 (2)N6—Pd22.0150 (14)
C3—H6A0.9900N6—H70.880 (15)
C3—H6B0.9900N6—H80.881 (15)
C4—N61.493 (2)N7—O81.2189 (19)
C4—H7A0.9900N7—O71.2341 (19)
C4—H7B0.9900N7—O91.3126 (18)
N1—Pd12.0032 (14)N8—O101.2248 (18)
N1—H10.882 (15)N8—O111.2422 (19)
N1—H20.863 (15)N8—O121.2935 (18)
N2—Pd12.0231 (14)O3—Pd12.0326 (12)
N2—H30.897 (15)O4—Pd12.0492 (11)
N2—H40.886 (15)O9—Pd22.0465 (12)
N3—O11.2279 (19)O12—Pd22.0426 (11)
N1—C1—C2107.53 (14)O2—N3—O3115.81 (14)
N1—C1—H2A110.2O5—N4—O6124.46 (15)
C2—C1—H2A110.2O5—N4—O4119.51 (14)
N1—C1—H2B110.2O6—N4—O4116.04 (13)
C2—C1—H2B110.2C3—N5—Pd2107.40 (11)
H2A—C1—H2B108.5C3—N5—H5109.1 (14)
N2—C2—C1108.04 (14)Pd2—N5—H5113.7 (14)
N2—C2—H3A110.1C3—N5—H6109.7 (14)
C1—C2—H3A110.1Pd2—N5—H6109.3 (14)
N2—C2—H3B110.1H5—N5—H6108 (2)
C1—C2—H3B110.1C4—N6—Pd2110.58 (10)
H3A—C2—H3B108.4C4—N6—H7107.4 (14)
N5—C3—C4106.87 (13)Pd2—N6—H7110.6 (14)
N5—C3—H6A110.3C4—N6—H8104.2 (14)
C4—C3—H6A110.3Pd2—N6—H8116.6 (14)
N5—C3—H6B110.3H7—N6—H8106.9 (19)
C4—C3—H6B110.3O8—N7—O7123.94 (15)
H6A—C3—H6B108.6O8—N7—O9117.45 (14)
N6—C4—C3107.43 (13)O7—N7—O9118.61 (14)
N6—C4—H7A110.2O10—N8—O11123.87 (15)
C3—C4—H7A110.2O10—N8—O12120.38 (14)
N6—C4—H7B110.2O11—N8—O12115.74 (13)
C3—C4—H7B110.2N3—O3—Pd1122.12 (10)
H7A—C4—H7B108.5N4—O4—Pd1116.72 (9)
C1—N1—Pd1107.22 (11)N7—O9—Pd2115.43 (9)
C1—N1—H1108.2 (14)N8—O12—Pd2120.26 (10)
Pd1—N1—H1115.3 (14)N1—Pd1—N283.84 (6)
C1—N1—H2108.2 (14)N1—Pd1—O3172.80 (6)
Pd1—N1—H2108.1 (14)N2—Pd1—O394.62 (5)
H1—N1—H2110 (2)N1—Pd1—O490.81 (5)
C2—N2—Pd1110.66 (10)N2—Pd1—O4173.19 (5)
C2—N2—H3108.3 (14)O3—Pd1—O490.16 (5)
Pd1—N2—H3108.4 (14)N5—Pd2—N683.82 (6)
C2—N2—H4108.0 (14)N5—Pd2—O1295.14 (5)
Pd1—N2—H4111.1 (14)N6—Pd2—O12173.68 (5)
H3—N2—H4110 (2)N5—Pd2—O9173.01 (5)
O1—N3—O2123.85 (15)N6—Pd2—O991.35 (5)
O1—N3—O3120.34 (14)O12—Pd2—O989.11 (5)
N1—C1—C2—N249.86 (18)C1—N1—Pd1—O4150.26 (11)
N5—C3—C4—N651.84 (17)C2—N2—Pd1—N11.67 (12)
C2—C1—N1—Pd147.81 (15)C2—N2—Pd1—O3174.61 (11)
C1—C2—N2—Pd128.20 (17)N3—O3—Pd1—N251.27 (13)
C4—C3—N5—Pd247.52 (14)N3—O3—Pd1—O4133.58 (12)
C3—C4—N6—Pd231.80 (15)N4—O4—Pd1—N1110.37 (11)
O1—N3—O3—Pd16.0 (2)N4—O4—Pd1—O376.76 (11)
O2—N3—O3—Pd1173.27 (11)C3—N5—Pd2—N623.81 (10)
O5—N4—O4—Pd114.64 (18)C3—N5—Pd2—O12149.92 (10)
O6—N4—O4—Pd1165.53 (11)C4—N6—Pd2—N54.60 (10)
O8—N7—O9—Pd2173.58 (11)C4—N6—Pd2—O9179.53 (10)
O7—N7—O9—Pd27.03 (17)N8—O12—Pd2—N558.45 (12)
O10—N8—O12—Pd23.5 (2)N8—O12—Pd2—O9127.11 (12)
O11—N8—O12—Pd2175.60 (11)N7—O9—Pd2—N6109.89 (11)
C1—N1—Pd1—N225.52 (11)N7—O9—Pd2—O1276.42 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···O70.90 (2)2.23 (2)2.9167 (19)134 (2)
N2—H3···O11i0.90 (2)2.45 (2)3.0911 (19)129 (2)
N2—H4···O10.89 (2)2.49 (2)3.009 (2)118 (2)
N2—H4···O9ii0.89 (2)2.58 (2)3.415 (2)158 (2)
N5—H6···O40.88 (2)2.45 (2)3.2837 (19)160 (2)
N5—H6···O40.88 (2)2.45 (2)3.2837 (19)160 (2)
N1—H2···O11ii0.86 (2)2.35 (2)3.199 (2)167 (2)
N1—H2···O12ii0.86 (2)2.46 (2)3.1177 (19)133 (2)
N1—H1···O9iii0.88 (2)2.24 (2)3.0642 (18)157 (2)
N6—H7···O30.88 (2)2.39 (2)2.9550 (18)122 (2)
N6—H7···O10i0.88 (2)2.50 (2)3.1324 (19)130 (2)
N6—H7···O20.88 (2)2.58 (2)3.363 (2)149 (2)
N6—H8···O4i0.88 (2)2.38 (2)3.1695 (18)150 (2)
N6—H8···O6i0.88 (2)2.40 (2)3.1628 (19)145 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H8N4O6Pd
Mr290.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.8478 (6), 7.7746 (3), 13.0702 (5)
β (°) 109.816 (1)
V3)1610.62 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.51 × 0.30 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.514, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
15349, 3881, 3554
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.043, 1.03
No. of reflections3881
No. of parameters259
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 0.40

Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SAINT and XPREP (Bruker, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
N1—Pd12.0032 (14)O3—Pd12.0326 (12)
N2—Pd12.0231 (14)O4—Pd12.0492 (11)
N5—Pd22.0102 (15)O9—Pd22.0465 (12)
N6—Pd22.0150 (14)O12—Pd22.0426 (11)
N1—Pd1—N283.84 (6)N5—Pd2—N683.82 (6)
N1—Pd1—O3172.80 (6)N5—Pd2—O1295.14 (5)
N2—Pd1—O394.62 (5)N6—Pd2—O12173.68 (5)
N1—Pd1—O490.81 (5)N5—Pd2—O9173.01 (5)
N2—Pd1—O4173.19 (5)N6—Pd2—O991.35 (5)
O3—Pd1—O490.16 (5)O12—Pd2—O989.11 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3···O70.897 (15)2.225 (19)2.9167 (19)133.6 (19)
N2—H3···O11i0.897 (15)2.45 (2)3.0911 (19)128.7 (18)
N2—H4···O10.886 (15)2.49 (2)3.009 (2)117.7 (16)
N2—H4···O9ii0.886 (15)2.576 (17)3.415 (2)158.3 (19)
N5—H6···O40.875 (15)2.446 (16)3.2837 (19)160.3 (19)
N5—H6···O40.875 (15)2.446 (16)3.2837 (19)160.3 (19)
N1—H2···O11ii0.863 (15)2.353 (16)3.199 (2)166.6 (18)
N1—H2···O12ii0.863 (15)2.463 (19)3.1177 (19)133.1 (18)
N1—H1···O9iii0.882 (15)2.235 (17)3.0642 (18)156.6 (19)
N6—H7···O30.880 (15)2.39 (2)2.9550 (18)122.3 (17)
N6—H7···O10i0.880 (15)2.496 (19)3.1324 (19)129.8 (17)
N6—H7···O20.880 (15)2.580 (17)3.363 (2)148.8 (17)
N6—H8···O4i0.881 (15)2.378 (18)3.1695 (18)149.5 (19)
N6—H8···O6i0.881 (15)2.398 (18)3.1628 (19)145.4 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds