Download citation
Download citation
link to html
The title compound, C17H18N2O4·H2O, was prepared by the reaction of 4-(2-hydroxy­ethoxy)-3-methoxy­benzaldehyde and benzohydrazide. The crystal structure determination was undertaken in order to study the effect of intra­molecular hydrogen bonding (C—H...O and N—H...O) on the mol­ecular conformation, and the effect of inter­molecular hydrogen bonding (O—H...O, O—H...N and C—H...O) on the stability of the structure in the solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030655/ac6197sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030655/ac6197Isup2.hkl
Contains datablock I

CCDC reference: 287430

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.129
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The synthesis of new and designed crystal structures has attracted attention in medicine and chemistry. One of the aims of crystal engineering is to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable (Tynan et al., 2005; Parashar et al., 1988). In the present study, we report the synthesis and molecular structure of the title compound, (I).

The bond lengths of O1—C8 and O2—C7 are 1.412 (2) and 1.430 (2) Å, respectively, and are normal. The bond length of N1—C10 is 1.269 Å and is similar to the value of 1.279 (3) Å in isonicotinic acid (2-hydroxy-3-methoxybenzylidene)hydrazide (Yu et al., 2005). The vanillin moiety (C1–C7/O2/O3) and the benzohydrazide moiety (C11–C17) are planar, with r.m.s. deviations of the fitted atoms of 0.0342 and 0.0085 Å, respectively. The hedral angle between the two planes mentioned above is 9.31 (11)°. It should be noted that the strong intramolecular and intermolecular hydrogen bonds are found in the crystal structure (Table 1). The intramolecular hydrogen bonds stabilize the comformation of molecule, while the intermolecular hydrogen bonds contribute to the stabilization of the solid state. At the same time, the lattice water molecule participates in interactions with the molecules through hydrogen bonds, stabilizing the zigzag suprastructure, as shown in Fig. 2.

Experimental top

To a solution of 4-hydroxy-3-methoxybenzaldehyde (15.2 g, 10 mmol) and potassium carbonate (13.8 g, 10 mmol) in acetonitrile (500 ml), 2-chloroethanol (8.5 g, 10 mmol) was added in 30 min, and the mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resultant oil was poured into ice water (500 ml). Then the white precipitate was isolated and recrystallized from ethanol to give 4-(2-hydroxyethoxy)-3-methoxybenzaldehyde in 43% yield. An anhydrous ethanol solution of 4-(2-hydroxyethoxy)-3-methoxybenzaldehyde (1.96 g, 10 mmol) was added to an anhydrous ethanol solution of benzohydrazide (1.36 g, 10 mmol) and the mixture was stirred at 350 K for 5 h under nitrogen, whereupon a yellow precipitate appeared. The product was isolated and recrystallized from ethanol, and then dried in vacuo to give the pure compound in 83% yield. Colorless single crystals of (1) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms bonded to C atoms were included in calculated positions (C—H = 0.93–0.96 Å) and refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The H atoms attached to O and N atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Intermolecular hydrogen-bonding interactions (dashed lines).
N'-[(E)-4-(2-Hydroxyethoxy)-3-methoxybenzylidene]benzohydrazide monohydrate top
Crystal data top
C17H18N2O4·H2OF(000) = 704
Mr = 332.35Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.924 (2) ÅCell parameters from 2599 reflections
b = 11.936 (3) Åθ = 2.2–25.8°
c = 14.890 (4) ŵ = 0.10 mm1
β = 104.003 (4)°T = 294 K
V = 1711.5 (7) Å3Block, colorless
Z = 40.46 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3508 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 912
Tmin = 0.948, Tmax = 0.972k = 1414
9477 measured reflectionsl = 189
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.3524P]
where P = (Fo2 + 2Fc2)/3
3508 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H18N2O4·H2OV = 1711.5 (7) Å3
Mr = 332.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.924 (2) ŵ = 0.10 mm1
b = 11.936 (3) ÅT = 294 K
c = 14.890 (4) Å0.46 × 0.40 × 0.30 mm
β = 104.003 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3508 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2112 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.972Rint = 0.031
9477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3508 reflectionsΔρmin = 0.20 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66545 (16)0.59338 (13)0.01994 (11)0.0628 (4)
H10.694 (3)0.563 (2)0.026 (2)0.097 (9)*
O20.56987 (13)0.77031 (11)0.11182 (9)0.0495 (4)
O30.74584 (15)0.90771 (12)0.20585 (9)0.0592 (4)
O40.81197 (15)1.04064 (13)0.65683 (9)0.0591 (4)
N10.64359 (16)0.91330 (13)0.53297 (10)0.0424 (4)
N20.63220 (18)0.92098 (14)0.62356 (11)0.0434 (4)
H20.569 (2)0.8849 (19)0.6396 (15)0.065 (7)*
C10.55696 (19)0.83265 (15)0.38326 (12)0.0405 (4)
C20.65512 (19)0.88345 (16)0.34299 (12)0.0422 (5)
H2A0.72070.93200.37780.051*
C30.65524 (18)0.86195 (15)0.25231 (12)0.0403 (4)
C40.55733 (19)0.78856 (15)0.19950 (13)0.0399 (4)
C50.4581 (2)0.74125 (16)0.23835 (14)0.0469 (5)
H50.39050.69460.20310.056*
C60.4587 (2)0.76303 (16)0.32977 (14)0.0474 (5)
H60.39180.73020.35550.057*
C70.4792 (2)0.69089 (18)0.05561 (14)0.0526 (5)
H7A0.38940.72480.02960.063*
H7B0.46590.62680.09250.063*
C80.5441 (2)0.65502 (19)0.01967 (14)0.0578 (6)
H8A0.47980.60890.06390.069*
H8B0.56750.72010.05190.069*
C90.8229 (2)1.0031 (2)0.24390 (15)0.0633 (6)
H9A0.76171.05740.26060.095*
H9B0.86671.03510.19900.095*
H9C0.89250.98190.29800.095*
C100.5550 (2)0.85139 (16)0.47980 (13)0.0442 (5)
H100.48650.81690.50310.053*
C110.7221 (2)0.98739 (16)0.68209 (13)0.0430 (5)
C120.7125 (2)0.99192 (16)0.78097 (13)0.0457 (5)
C130.6075 (2)0.94249 (19)0.81319 (14)0.0593 (6)
H130.53730.90350.77260.071*
C140.6065 (3)0.9507 (2)0.90572 (18)0.0796 (8)
H140.53470.91840.92690.095*
C150.7103 (4)1.0061 (3)0.96569 (18)0.0915 (9)
H150.71101.00931.02820.110*
C160.8134 (3)1.0568 (3)0.93457 (18)0.0932 (9)
H160.88301.09600.97560.112*
C170.8146 (3)1.0502 (2)0.84223 (16)0.0688 (7)
H170.88491.08530.82130.083*
O50.3840 (2)0.7919 (2)0.63922 (16)0.0785 (6)
H5A0.357 (3)0.740 (3)0.656 (2)0.111 (14)*
H5B0.311 (4)0.826 (3)0.599 (3)0.147 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (10)0.0680 (10)0.0532 (9)0.0180 (8)0.0191 (8)0.0128 (8)
O20.0537 (8)0.0503 (8)0.0483 (8)0.0103 (6)0.0197 (6)0.0197 (6)
O30.0647 (9)0.0678 (10)0.0545 (9)0.0291 (8)0.0325 (7)0.0217 (7)
O40.0611 (9)0.0690 (10)0.0527 (9)0.0149 (8)0.0247 (7)0.0030 (7)
N10.0453 (9)0.0484 (9)0.0372 (9)0.0043 (8)0.0172 (7)0.0022 (7)
N20.0474 (10)0.0491 (10)0.0376 (9)0.0003 (8)0.0181 (8)0.0028 (8)
C10.0401 (10)0.0400 (10)0.0437 (11)0.0056 (8)0.0147 (8)0.0003 (8)
C20.0386 (10)0.0458 (11)0.0429 (11)0.0039 (9)0.0111 (8)0.0071 (9)
C30.0392 (10)0.0407 (10)0.0440 (11)0.0033 (8)0.0161 (9)0.0050 (8)
C40.0420 (10)0.0356 (10)0.0447 (11)0.0018 (8)0.0155 (9)0.0080 (8)
C50.0424 (11)0.0428 (11)0.0571 (13)0.0074 (9)0.0153 (9)0.0132 (9)
C60.0439 (11)0.0462 (11)0.0573 (13)0.0060 (9)0.0223 (10)0.0036 (10)
C70.0480 (11)0.0529 (12)0.0536 (12)0.0003 (10)0.0060 (10)0.0184 (10)
C80.0694 (14)0.0565 (13)0.0446 (12)0.0035 (11)0.0083 (11)0.0116 (10)
C90.0680 (14)0.0742 (15)0.0507 (13)0.0315 (13)0.0200 (11)0.0088 (12)
C100.0455 (11)0.0455 (11)0.0460 (11)0.0014 (9)0.0198 (9)0.0025 (9)
C110.0459 (11)0.0425 (11)0.0437 (11)0.0091 (9)0.0168 (9)0.0054 (9)
C120.0545 (12)0.0450 (11)0.0390 (11)0.0126 (10)0.0142 (10)0.0043 (9)
C130.0784 (15)0.0595 (14)0.0465 (12)0.0009 (12)0.0279 (12)0.0049 (10)
C140.117 (2)0.0751 (17)0.0589 (16)0.0097 (17)0.0459 (17)0.0123 (14)
C150.134 (3)0.102 (2)0.0406 (14)0.022 (2)0.0246 (17)0.0000 (15)
C160.103 (2)0.116 (2)0.0552 (17)0.000 (2)0.0086 (16)0.0238 (16)
C170.0726 (16)0.0794 (17)0.0543 (14)0.0022 (13)0.0153 (12)0.0113 (12)
O50.0589 (11)0.0880 (14)0.0918 (14)0.0126 (11)0.0243 (10)0.0227 (12)
Geometric parameters (Å, º) top
O1—C81.412 (2)C7—H7A0.9700
O1—H10.88 (3)C7—H7B0.9700
O2—C41.359 (2)C8—H8A0.9700
O2—C71.430 (2)C8—H8B0.9700
O3—C31.374 (2)C9—H9A0.9600
O3—C91.412 (2)C9—H9B0.9600
O4—C111.226 (2)C9—H9C0.9600
N1—C101.269 (2)C10—H100.9300
N1—N21.384 (2)C11—C121.499 (3)
N2—C111.345 (3)C12—C171.377 (3)
N2—H20.84 (2)C12—C131.380 (3)
C1—C61.378 (3)C13—C141.384 (3)
C1—C21.400 (3)C13—H130.9300
C1—C101.460 (3)C14—C151.360 (4)
C2—C31.375 (2)C14—H140.9300
C2—H2A0.9300C15—C161.363 (4)
C3—C41.400 (3)C15—H150.9300
C4—C51.378 (3)C16—C171.380 (3)
C5—C61.384 (3)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—H60.9300O5—H5A0.74 (4)
C7—C81.485 (3)O5—H5B0.92 (4)
C8—O1—H1107.2 (18)O1—C8—H8B110.0
C4—O2—C7118.55 (15)C7—C8—H8B110.0
C3—O3—C9118.40 (15)H8A—C8—H8B108.4
C10—N1—N2116.04 (16)O3—C9—H9A109.5
C11—N2—N1118.22 (17)O3—C9—H9B109.5
C11—N2—H2122.8 (15)H9A—C9—H9B109.5
N1—N2—H2119.0 (15)O3—C9—H9C109.5
C6—C1—C2118.81 (17)H9A—C9—H9C109.5
C6—C1—C10119.02 (17)H9B—C9—H9C109.5
C2—C1—C10122.16 (17)N1—C10—C1122.08 (17)
C3—C2—C1120.40 (17)N1—C10—H10119.0
C3—C2—H2A119.8C1—C10—H10119.0
C1—C2—H2A119.8O4—C11—N2121.66 (17)
O3—C3—C2125.22 (17)O4—C11—C12120.44 (19)
O3—C3—C4114.58 (15)N2—C11—C12117.87 (17)
C2—C3—C4120.20 (17)C17—C12—C13118.84 (19)
O2—C4—C5125.35 (17)C17—C12—C11117.19 (19)
O2—C4—C3115.31 (16)C13—C12—C11123.97 (19)
C5—C4—C3119.34 (17)C12—C13—C14120.3 (2)
C4—C5—C6120.14 (18)C12—C13—H13119.9
C4—C5—H5119.9C14—C13—H13119.9
C6—C5—H5119.9C15—C14—C13120.1 (3)
C1—C6—C5121.05 (18)C15—C14—H14120.0
C1—C6—H6119.5C13—C14—H14120.0
C5—C6—H6119.5C14—C15—C16120.3 (2)
O2—C7—C8107.86 (16)C14—C15—H15119.9
O2—C7—H7A110.1C16—C15—H15119.9
C8—C7—H7A110.1C15—C16—C17120.1 (3)
O2—C7—H7B110.1C15—C16—H16119.9
C8—C7—H7B110.1C17—C16—H16119.9
H7A—C7—H7B108.4C12—C17—C16120.4 (3)
O1—C8—C7108.46 (17)C12—C17—H17119.8
O1—C8—H8A110.0C16—C17—H17119.8
C7—C8—H8A110.0H5A—O5—H5B107 (3)
C10—N1—N2—C11178.71 (17)O2—C7—C8—O167.3 (2)
C6—C1—C2—C31.5 (3)N2—N1—C10—C1178.07 (16)
C10—C1—C2—C3178.72 (17)C6—C1—C10—N1179.04 (18)
C9—O3—C3—C216.2 (3)C2—C1—C10—N11.2 (3)
C9—O3—C3—C4163.54 (18)N1—N2—C11—O40.3 (3)
C1—C2—C3—O3179.49 (18)N1—N2—C11—C12177.76 (15)
C1—C2—C3—C40.3 (3)O4—C11—C12—C175.2 (3)
C7—O2—C4—C53.9 (3)N2—C11—C12—C17172.95 (19)
C7—O2—C4—C3176.08 (16)O4—C11—C12—C13174.15 (19)
O3—C3—C4—O22.4 (2)N2—C11—C12—C137.7 (3)
C2—C3—C4—O2177.79 (16)C17—C12—C13—C140.7 (3)
O3—C3—C4—C5177.55 (17)C11—C12—C13—C14180.0 (2)
C2—C3—C4—C52.2 (3)C12—C13—C14—C151.1 (4)
O2—C4—C5—C6177.64 (18)C13—C14—C15—C162.2 (4)
C3—C4—C5—C62.4 (3)C14—C15—C16—C171.5 (5)
C2—C1—C6—C51.4 (3)C13—C12—C17—C161.4 (3)
C10—C1—C6—C5178.86 (18)C11—C12—C17—C16179.2 (2)
C4—C5—C6—C10.6 (3)C15—C16—C17—C120.4 (4)
C4—O2—C7—C8159.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.92 (4)1.89 (4)2.805 (3)176 (4)
O5—H5A···O3i0.74 (4)2.30 (4)3.033 (3)172 (4)
N2—H2···O50.84 (2)2.14 (2)2.962 (3)164 (2)
O1—H1···N1ii0.88 (3)2.42 (3)3.091 (2)133 (2)
O1—H1···O4ii0.88 (3)1.95 (3)2.768 (2)153 (3)
C17—H17···O40.932.442.757 (3)100
C13—H13···O50.932.563.476 (3)167
C10—H10···O50.932.503.312 (3)146
C2—H2A···O1iii0.932.543.443 (2)163
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4·H2O
Mr332.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.924 (2), 11.936 (3), 14.890 (4)
β (°) 104.003 (4)
V3)1711.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.948, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9477, 3508, 2112
Rint0.031
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.00
No. of reflections3508
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.92 (4)1.89 (4)2.805 (3)176 (4)
O5—H5A···O3i0.74 (4)2.30 (4)3.033 (3)172 (4)
N2—H2···O50.84 (2)2.14 (2)2.962 (3)164 (2)
O1—H1···N1ii0.88 (3)2.42 (3)3.091 (2)133 (2)
O1—H1···O4ii0.88 (3)1.95 (3)2.768 (2)153 (3)
C17—H17···O40.932.442.757 (3)100
C13—H13···O50.932.563.476 (3)167
C10—H10···O50.932.503.312 (3)146
C2—H2A···O1iii0.932.543.443 (2)163
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds