Download citation
Download citation
link to html
The title compound, [La2(C4H5O2)6(C12H8N2)2]·2H2O, is a discrete centrosymmetric homodinuclear complex, which is structurally very similar to a previously studied analogue. The LaIII atoms are bridged by two bidentate and two tridentate carboxyl­ate groups, with an La...La separation of 4.0807 (4) Å. Each LaIII atom exhibits a distorted tricapped trigonal prismatic coordination formed by seven O atoms of bridging methyl­acrylate groups and two N atoms of the bidentate chelating 1,10-phenanthroline ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028928/br6212sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028928/br6212Isup2.hkl
Contains datablock I

CCDC reference: 287454

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.035
  • wR factor = 0.112
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.82 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) La1 - O6_a .. 8.36 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C42 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C24 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C33 PLAT415_ALERT_2_C Short Inter D-H..H-X HW2 .. H6 .. 2.14 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.15 Ratio PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, Miller & Drillon, 2002; Christou et al., 2000). Efforts to obtain molecular magnets containing rare-earth ions have been comparatively less numerous because the interactions between pairs of f electrons are expected to be small, producing measurable effects only at extremely low temperatures, but the number of new reported compounds in which rare-earth ions are magnetically coupled to transition-metal ions and/or organic radicals is rapidly increasing. In recent nears, we have pursued a project on the structures and properties of heteronuclear complexes of rare-earth and transition metals bridged by carboxyl groups (Wu et al., 2002, 2003, 2004; Zhu et al., 2005). The title complex, (I), was unexpectedly obtained during the preparation of a lanthanium–iron complex.

Fig. 1 shows the molecular structure of the title complex; selected bond distances are listed in Table 1.

Compound (I) is isostructural with another La analogue, (II), in which the water molecule is replaced by an α-methylacrylic acid molecule (Lu, et al., 1996). As one would expect, the surroundings of the central atoms in the two complexes are the same. This means that the LaIII atoms, with the coordination geometry of a distorted tricapped trigonal prism, are linked to each other by bidentate and tridentate carboxylate groups to form a centrosymmetric dimeric unit. Each LaIII atom is nine-coordinated by two N atoms of the phenanthroline ligand and seven O atoms from three different coordination modes of six carboxylate groups. The detailed coordination modes of α-methylacrylate groups in (II) are also fully applicable to the title complex. The La···Lai separation [4.0807 (4) Å] in the dimer just exceeds the sum of two atomic radii and is slightly longer than that [4.0456 (4) Å] in (II).

The structure of the title complex has two distinct La—O distances; the average La—Obridging bond length is 2.498 Å and La—Ochelating is 2.606 Å, which are similar to those (2.494 and 2.612 Å) of (II). The La—Ochelating distance is significantly larger than the sum of the covalent radii of the two atoms, as is to be expected because the (O—La—O)chelating angles of about 50° indicate ring strain. The phenanthroline ligands possess local C2v symmetry. The average La—N bond distance is 2.708 Å and is nearly the same as the corresponding La—N distance (2.709 Å) in (II). A water molecule is connected with atom O1 by a hydrogen bond.

Comparison of structures (I) and (II) shows that it is uncertain whether water or a free α-methylacrylic acid molecule will be included in the complex during the growth of the crystal.

Experimental top

LaL3·2H2O [430 mg, 1.0 mmol; HL = CH2C(CH3)COOH] was dissolved in water (5 ml). A 1 M solution of Fe(NO3)3 (1.0 ml) was added and the pH was adjusted to 4.1 with 0.1 M HL. An ethanol solution (5 ml) of 1,10-phenanthroline (200 mg, 1.0 mmol) was added to the mixture with stirring. The filtrate was allowed to stand at room temperature, and colourless single crystals suitable for X-ray work precipitated after a few days. Analysis calculated for C48H50La2N4O14: C 49.41, H 4.15, N 4.80, La 23.81%; found: C 49.56, H 4.18, N 4.76, La 23.63%.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and O—H = 0.94–0.99 Å) and included in the final cycles of refinement in a riding model, with Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C,O) in the case of the methyl and water H atoms].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: CrystalStructure (Rigaku/MSC, 2002); data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecule of the title complex, with the displacement ellipsoids drawn at the 30% probability level. The H atoms have been omitted.
Hexa-µ-α-methylacrylato-bis[(1,10-phenanthroline)lanthanum(III)] monohydrate top
Crystal data top
[La2(C4H5O2)6(C12H8N2)2]·2H2OZ = 1
Mr = 1184.74F(000) = 592
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8815 (4) ÅCell parameters from 6732 reflections
b = 11.0081 (5) Åθ = 2.5–27.5°
c = 11.7412 (7) ŵ = 1.80 mm1
α = 69.229 (2)°T = 293 K
β = 77.892 (4)°Chunk, colourless
γ = 68.091 (2)°0.21 × 0.18 × 0.14 mm
V = 1215.16 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5471 independent reflections
Radiation source: fine-focus sealed tube5112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scansh = 1314
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1314
Tmin = 0.703, Tmax = 0.786l = 1515
11677 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.7074P]
where P = (Fo2 + 2Fc2)/3
5471 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.21 e Å3
Crystal data top
[La2(C4H5O2)6(C12H8N2)2]·2H2Oγ = 68.091 (2)°
Mr = 1184.74V = 1215.16 (10) Å3
Triclinic, P1Z = 1
a = 10.8815 (4) ÅMo Kα radiation
b = 11.0081 (5) ŵ = 1.80 mm1
c = 11.7412 (7) ÅT = 293 K
α = 69.229 (2)°0.21 × 0.18 × 0.14 mm
β = 77.892 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5471 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5112 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.786Rint = 0.045
11677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.24Δρmax = 0.81 e Å3
5471 reflectionsΔρmin = 1.21 e Å3
307 parameters
Special details top

Experimental. The elemental analyses on C, H and N were performed using a Carlo-Erba 1110 Elemental Analyzer; La was analyzed by titration with edta.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.856611 (19)0.56341 (2)0.629075 (19)0.02779 (9)
O10.8829 (3)0.3733 (3)0.8378 (3)0.0457 (8)
O20.6862 (3)0.4584 (4)0.7671 (3)0.0489 (8)
O30.8836 (3)0.8022 (3)0.5132 (3)0.0422 (7)
O40.7597 (3)0.5913 (4)0.4432 (3)0.0438 (7)
O51.0851 (3)0.5077 (4)0.6836 (3)0.0439 (7)
O60.9738 (3)0.3565 (3)0.5647 (3)0.0375 (6)
O71.1319 (6)0.1741 (7)0.7938 (7)0.115 (2)
HW11.04620.24640.80260.172*
HW21.18820.22310.74260.172*
N10.8041 (3)0.6969 (4)0.7961 (3)0.0359 (7)
N20.6166 (3)0.7603 (4)0.6430 (3)0.0368 (8)
C10.8901 (5)0.6631 (5)0.8752 (5)0.0451 (10)
H10.96350.58400.87950.054*
C20.8778 (6)0.7385 (6)0.9527 (5)0.0541 (13)
H20.94010.70921.00840.065*
C30.7720 (5)0.8566 (6)0.9452 (5)0.0516 (12)
H30.76230.90980.99500.062*
C40.6786 (5)0.8969 (5)0.8624 (4)0.0435 (10)
C50.5628 (6)1.0196 (6)0.8500 (5)0.0533 (12)
H50.55341.08020.89220.064*
C60.4687 (5)1.0465 (5)0.7780 (5)0.0524 (12)
H60.39401.12440.77300.063*
C70.4810 (4)0.9589 (5)0.7100 (4)0.0419 (10)
C80.3811 (5)0.9788 (6)0.6393 (5)0.0520 (12)
H80.30291.05290.63570.062*
C90.3983 (5)0.8912 (6)0.5770 (5)0.0551 (13)
H90.33090.90220.53330.066*
C100.5185 (5)0.7834 (5)0.5786 (5)0.0462 (11)
H100.53050.72540.53280.055*
C110.5972 (4)0.8439 (4)0.7101 (4)0.0347 (8)
C120.6977 (4)0.8124 (4)0.7895 (4)0.0343 (8)
C210.7637 (5)0.3758 (5)0.8480 (4)0.0395 (9)
C220.7128 (6)0.2818 (6)0.9582 (5)0.0533 (12)
C230.5765 (8)0.3067 (9)0.9799 (7)0.097 (3)
H23A0.54250.24821.04670.116*
H23B0.51920.38180.92760.116*
C240.8082 (9)0.1696 (8)1.0330 (7)0.094 (3)
H24A0.89590.17281.00050.140*
H24B0.80140.08461.03440.140*
H24C0.79140.17591.11470.140*
C310.9857 (4)0.7639 (4)0.4459 (4)0.0341 (8)
C321.0651 (5)0.8577 (5)0.3814 (4)0.0421 (10)
C330.9912 (7)1.0074 (6)0.3431 (7)0.0686 (17)
H33A0.89761.02230.36370.103*
H33B1.00791.04510.25630.103*
H33C1.02021.05180.38450.103*
C341.1991 (6)0.8026 (7)0.3649 (7)0.0661 (16)
H34A1.25060.85970.32750.079*
H34B1.23960.70770.39090.079*
C410.7965 (4)0.5330 (4)0.3618 (4)0.0357 (9)
C420.6936 (5)0.5094 (5)0.3115 (5)0.0450 (10)
C430.5669 (5)0.5636 (7)0.3435 (6)0.0668 (17)
H43A0.50280.54950.31300.080*
H43B0.54140.61610.39670.080*
C440.7420 (7)0.4241 (9)0.2268 (8)0.084 (2)
H44A0.83740.39370.21660.126*
H44B0.70770.47790.14880.126*
H44C0.71210.34560.26030.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02322 (12)0.03225 (13)0.02808 (13)0.00983 (9)0.00116 (8)0.00921 (9)
O10.0392 (17)0.0472 (17)0.0439 (18)0.0183 (14)0.0075 (13)0.0005 (14)
O20.0365 (17)0.057 (2)0.048 (2)0.0214 (15)0.0065 (14)0.0006 (16)
O30.0370 (16)0.0335 (14)0.0501 (19)0.0112 (12)0.0056 (13)0.0115 (13)
O40.0328 (15)0.0575 (19)0.0450 (18)0.0098 (14)0.0093 (13)0.0219 (15)
O50.0290 (14)0.064 (2)0.0425 (17)0.0157 (14)0.0025 (12)0.0207 (15)
O60.0366 (15)0.0353 (14)0.0426 (17)0.0136 (12)0.0019 (12)0.0130 (13)
O70.102 (5)0.107 (4)0.115 (5)0.009 (4)0.034 (4)0.044 (4)
N10.0342 (17)0.0396 (18)0.0309 (17)0.0092 (14)0.0038 (13)0.0098 (14)
N20.0277 (16)0.0416 (18)0.0377 (19)0.0089 (14)0.0038 (13)0.0101 (15)
C10.039 (2)0.055 (3)0.041 (2)0.013 (2)0.0073 (18)0.015 (2)
C20.054 (3)0.074 (3)0.045 (3)0.025 (3)0.012 (2)0.021 (3)
C30.057 (3)0.066 (3)0.044 (3)0.025 (3)0.001 (2)0.029 (2)
C40.048 (2)0.045 (2)0.040 (2)0.018 (2)0.0058 (18)0.0173 (19)
C50.057 (3)0.050 (3)0.055 (3)0.015 (2)0.010 (2)0.028 (2)
C60.045 (3)0.046 (3)0.054 (3)0.005 (2)0.006 (2)0.016 (2)
C70.032 (2)0.040 (2)0.039 (2)0.0060 (17)0.0039 (16)0.0048 (18)
C80.031 (2)0.056 (3)0.050 (3)0.001 (2)0.0021 (19)0.011 (2)
C90.031 (2)0.072 (3)0.051 (3)0.008 (2)0.010 (2)0.013 (3)
C100.034 (2)0.058 (3)0.047 (3)0.014 (2)0.0086 (18)0.015 (2)
C110.0309 (19)0.036 (2)0.0279 (19)0.0103 (16)0.0036 (15)0.0032 (15)
C120.0330 (19)0.036 (2)0.032 (2)0.0146 (16)0.0026 (15)0.0083 (16)
C210.042 (2)0.042 (2)0.035 (2)0.0184 (19)0.0009 (17)0.0094 (18)
C220.066 (3)0.060 (3)0.041 (3)0.039 (3)0.001 (2)0.005 (2)
C230.081 (5)0.117 (7)0.073 (5)0.060 (5)0.011 (4)0.011 (4)
C240.114 (6)0.088 (5)0.070 (5)0.062 (5)0.030 (4)0.028 (4)
C310.036 (2)0.0344 (19)0.034 (2)0.0127 (16)0.0078 (16)0.0089 (16)
C320.050 (3)0.043 (2)0.038 (2)0.025 (2)0.0001 (18)0.0090 (19)
C330.078 (4)0.045 (3)0.078 (4)0.031 (3)0.002 (3)0.004 (3)
C340.051 (3)0.062 (3)0.090 (5)0.034 (3)0.017 (3)0.026 (3)
C410.032 (2)0.040 (2)0.037 (2)0.0128 (17)0.0099 (16)0.0082 (17)
C420.037 (2)0.058 (3)0.049 (3)0.019 (2)0.0107 (19)0.018 (2)
C430.036 (3)0.106 (5)0.077 (4)0.025 (3)0.006 (2)0.048 (4)
C440.059 (4)0.119 (6)0.114 (6)0.030 (4)0.011 (4)0.077 (5)
Geometric parameters (Å, º) top
La1—O12.584 (3)C6—H60.9300
La1—O22.532 (3)C7—C81.411 (7)
La1—O32.592 (3)C7—C111.417 (6)
La1—O42.493 (3)C8—C91.344 (8)
La1—O52.495 (3)C8—H80.9300
La1—O62.457 (3)C9—C101.398 (7)
La1—O6i2.718 (3)C9—H90.9300
La1—N12.699 (4)C10—H100.9300
La1—N22.719 (3)C11—C121.450 (6)
La1—C212.932 (5)C21—C221.493 (7)
La1—C313.025 (4)C22—C231.389 (9)
La1—La1i4.0812 (5)C22—C241.425 (9)
O1—C211.267 (5)C23—H23A0.9300
O2—C211.262 (6)C23—H23B0.9300
O3—C311.247 (5)C24—H24A0.9600
O4—C411.253 (5)C24—H24B0.9600
O5—C41i1.263 (5)C24—H24C0.9600
O6—C31i1.275 (5)C31—O6i1.275 (5)
O6—La1i2.718 (3)C31—C321.491 (6)
O7—HW10.9889C32—C341.355 (8)
O7—HW20.9436C32—C331.484 (7)
N1—C11.317 (6)C33—H33A0.9600
N1—C121.353 (5)C33—H33B0.9600
N2—C101.333 (6)C33—H33C0.9600
N2—C111.346 (6)C34—H34A0.9300
C1—C21.392 (7)C34—H34B0.9300
C1—H10.9300C41—O5i1.263 (5)
C2—C31.367 (8)C41—C421.508 (6)
C2—H20.9300C42—C431.314 (7)
C3—C41.396 (7)C42—C441.491 (8)
C3—H30.9300C43—H43A0.9300
C4—C121.409 (6)C43—H43B0.9300
C4—C51.450 (7)C44—H44A0.9600
C5—C61.344 (8)C44—H44B0.9600
C5—H50.9300C44—H44C0.9600
C6—C71.410 (8)
O1—La1—O250.95 (10)C3—C2—C1118.6 (5)
O1—La1—O3142.83 (11)C3—C2—H2120.7
O1—La1—O4130.93 (12)C1—C2—H2120.7
O1—La1—O573.18 (11)C2—C3—C4119.5 (5)
O1—La1—O678.78 (11)C2—C3—H3120.3
O1—La1—O6i135.08 (10)C4—C3—H3120.3
O1—La1—N174.92 (11)C3—C4—C12118.0 (5)
O1—La1—N2108.10 (11)C3—C4—C5122.9 (5)
O2—La1—O3140.11 (11)C12—C4—C5119.1 (5)
O2—La1—O491.21 (12)C6—C5—C4120.6 (5)
O2—La1—O5123.99 (11)C6—C5—H5119.7
O2—La1—O691.88 (12)C4—C5—H5119.7
O2—La1—O6i163.02 (12)C5—C6—C7121.4 (5)
O2—La1—N182.83 (12)C5—C6—H6119.3
O2—La1—N269.10 (11)C7—C6—H6119.3
O3—La1—O486.02 (11)C6—C7—C8123.2 (4)
O3—La1—O582.51 (11)C6—C7—C11120.6 (5)
O3—La1—O6124.43 (10)C8—C7—C11116.2 (5)
O3—La1—O6i48.72 (9)C9—C8—C7120.4 (4)
O3—La1—N173.11 (11)C9—C8—H8119.8
O3—La1—N271.41 (10)C7—C8—H8119.8
O4—La1—O5135.27 (11)C8—C9—C10119.4 (5)
O4—La1—O671.82 (10)C8—C9—H9120.3
O4—La1—O6i73.86 (10)C10—C9—H9120.3
O4—La1—N1137.58 (10)N2—C10—C9122.7 (5)
O4—La1—N278.01 (11)N2—C10—H10118.7
O5—La1—O679.63 (10)C9—C10—H10118.7
O5—La1—O6i66.15 (10)N2—C11—C7123.1 (4)
O5—La1—N179.00 (11)N2—C11—C12118.6 (4)
O5—La1—N2136.47 (11)C7—C11—C12118.3 (4)
O6—La1—O6i76.00 (11)N1—C12—C4122.0 (4)
O6—La1—N1149.92 (10)N1—C12—C11118.1 (4)
O6—La1—N2143.90 (11)C4—C12—C11119.7 (4)
N1—La1—O6i113.60 (10)O2—C21—O1121.0 (4)
N1—La1—N260.58 (11)O2—C21—C22119.1 (4)
O6i—La1—N2114.23 (10)O1—C21—C22119.9 (4)
O6—La1—C2184.63 (12)O2—C21—La159.3 (2)
O4—La1—C21111.75 (12)O1—C21—La161.7 (2)
O5—La1—C2198.71 (12)C22—C21—La1178.4 (3)
O2—La1—C2125.37 (12)C23—C22—C24124.0 (6)
O1—La1—C2125.58 (11)C23—C22—C21118.4 (5)
O3—La1—C21150.28 (12)C24—C22—C21117.6 (5)
N1—La1—C2177.97 (12)C22—C23—H23A120.0
O6i—La1—C21157.10 (11)C22—C23—H23B120.0
N2—La1—C2188.62 (12)H23A—C23—H23B120.0
O6—La1—C31100.92 (11)C22—C24—H24A109.5
O4—La1—C3181.84 (11)C22—C24—H24B109.5
O5—La1—C3170.44 (11)H24A—C24—H24B109.5
O2—La1—C31162.64 (11)C22—C24—H24C109.5
O1—La1—C31142.99 (11)H24A—C24—H24C109.5
O3—La1—C3124.10 (10)H24B—C24—H24C109.5
N1—La1—C3191.58 (11)O3—C31—O6i120.9 (4)
O6i—La1—C3124.92 (10)O3—C31—C32119.7 (4)
N2—La1—C3193.83 (11)O6i—C31—C32119.4 (4)
C21—La1—C31166.40 (12)O3—C31—La158.1 (2)
O6—La1—La1i40.26 (7)O6i—C31—La164.0 (2)
O4—La1—La1i68.11 (7)C32—C31—La1166.3 (3)
O5—La1—La1i67.81 (8)C34—C32—C33124.1 (5)
O2—La1—La1i131.05 (9)C34—C32—C31118.8 (4)
O1—La1—La1i110.77 (8)C33—C32—C31117.1 (4)
O3—La1—La1i84.31 (7)C32—C33—H33A109.5
N1—La1—La1i141.96 (8)C32—C33—H33B109.5
O6i—La1—La1i35.74 (6)H33A—C33—H33B109.5
N2—La1—La1i139.44 (8)C32—C33—H33C109.5
C21—La1—La1i123.87 (9)H33A—C33—H33C109.5
C31—La1—La1i60.66 (8)H33B—C33—H33C109.5
C21—O1—La192.8 (3)C32—C34—H34A120.0
C21—O2—La195.3 (3)C32—C34—H34B120.0
C31—O3—La197.8 (2)H34A—C34—H34B120.0
C41—O4—La1134.4 (3)O4—C41—O5i125.0 (4)
C41i—O5—La1137.8 (3)O4—C41—C42118.8 (4)
C31i—O6—La1164.9 (3)O5i—C41—C42116.2 (4)
C31i—O6—La1i91.1 (3)C43—C42—C44123.0 (5)
La1—O6—La1i104.00 (11)C43—C42—C41119.4 (5)
HW1—O7—HW2104.2C44—C42—C41117.6 (4)
C1—N1—C12118.0 (4)C42—C43—H43A120.0
C1—N1—La1121.0 (3)C42—C43—H43B120.0
C12—N1—La1120.4 (3)H43A—C43—H43B120.0
C10—N2—C11118.0 (4)C42—C44—H44A109.5
C10—N2—La1121.9 (3)C42—C44—H44B109.5
C11—N2—La1120.0 (3)H44A—C44—H44B109.5
N1—C1—C2124.0 (5)C42—C44—H44C109.5
N1—C1—H1118.0H44A—C44—H44C109.5
C2—C1—H1118.0H44B—C44—H44C109.5
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—HW1···O10.991.882.863 (5)174

Experimental details

Crystal data
Chemical formula[La2(C4H5O2)6(C12H8N2)2]·2H2O
Mr1184.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8815 (4), 11.0081 (5), 11.7412 (7)
α, β, γ (°)69.229 (2), 77.892 (4), 68.091 (2)
V3)1215.16 (10)
Z1
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.21 × 0.18 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.703, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
11677, 5471, 5112
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.112, 1.24
No. of reflections5471
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), CrystalStructure, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
La1—O12.584 (3)La1—O62.457 (3)
La1—O22.532 (3)La1—O6i2.718 (3)
La1—O32.592 (3)La1—N12.699 (4)
La1—O42.493 (3)La1—N22.719 (3)
La1—O52.495 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—HW1···O10.991.882.863 (5)174
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds