organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vicki Ronaldson, John. M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.032 wR factor = 0.074 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(2-Bromophenyl)acetamide

The title compound, C_8H_8BrNO , posseses normal geometrical parameters. The crystal packing is influenced by an intermolecular $N-H\cdots O$ hydrogen bond.

Comment

The title compound, C_8H_8BrNO , (I), (Fig. 1) was prepared as an intermediate in a natural product synthesis.

The dihedral angle between the mean planes of the benzene ring (atoms C1-C6) and the N1/O1/C7/C8 side-chain grouping in (I) is 42.75 $(14)^{\circ}$. This is intermediate between the situation in acetanilide [i.e. (I) without the Br atom], C₈H₉NO (Brown, 1966; Wasserman et al., 1985), where the aromatic ring and side chain are twisted by 17.6°, and N-methylacetanilide, $C_9H_{11}NO$ (Pederson, 1967), where the two corresponding groups of atoms are constrained by symmetry to be perpendicular. The C_{ar} – N (ar = aromatic) bond distances are almost identical in (I) and acetanilide (Brown, 1966), being 1.418 (4) and 1.417 (2) Å respectively, as are the $C_c - N$ (c = carbonyl) distances, at 1.358 (4) and 1.355 (2) Å, respectively. The equivalent distances in N-methylacetanilide (Pederson, 1967), where any electronic conjugation between the benzene ring and amide group is presumably impossible because of their perpendicular orientation, are distinctly different, with Car-N much longer at 1.474 Å and C_c-N significantly shorter at 1.325 Å.

The bond angle sum about N1 in (I) is 360.0° , suggesting that this atom is essentially sp^2 -hybridized. All the other geometrical parameters for (I) lie within their expected ranges (Allen *et al.*, 1995).

The crystal packing in (I) is influenced by an N-H···O hydrogen bond (Table 1 and Fig. 2) that links the molecules into chains propagating along [100]. There are no π - π stacking interactions in (I). The packing is shown in Fig. 3.

Experimental

2-Bromoaniline (3.44 g, 20.0 mmol) was added to a solution of acetyl chloride (1.88 g, 24.0 mmol) and DIPEA (N,N-diisopropylethylamine) (3.12 g, 24.0 mmol) in dry tetrahydrofuran (20 ml) at 273 K. On completion (as monitored by thin-layer chromatography), the reaction mixture was diluted with water (20 ml) and the product was

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 30 August 2005 Accepted 1 September 2005 Online 7 September 2005

Figure 1

View of (I) (50% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii).

Figure 2

Detail of (I) showing how the N-H···O hydrogen bond (dashed lines) links molecules into a chain. The view direction is perpendicular to the mean plane of the benzene ring of the central molecule, showing that no π - π stacking occurs. All H atoms except atom H1 and its symmetry equivalents have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]

extracted with EtOAc (3 × 20 ml). The organic phase was then washed with water (2 × 20 ml) and brine (20 ml), then dried (MgSO₄) and evaporated under reduced pressure to yield the crude product, which was recrystallized from CH₂Cl₂ to give (I) (yield 97%, 4.13 g) as clear needles; one of these was cut to a block for data collection; m.p. 363–364 K; $R_{\rm F}$ = 0.12 [hexane/EtOAc (5:1)]. IR (KBr disc, cm⁻¹): $\nu_{\rm max}$ 3272 (NH), 3159 (Ar–H), 1647 (C=O), 1518 (Ar C=C); ¹H NMR (250 MHz; CDCl₃): $\delta_{\rm H}$ 2.21 (3H, *s*, CH₃), 6.97 (1H, *t*, *J* = 7.5 Hz, Ar–H), 7.29 (1H, *t*, *J* = 7.5 Hz, Ar–H), 7.51 (1H, *d*, *J* = 8.0 Hz, Ar–H), 7.61 (1H, *bs*, NH), 8.31 (1H, *d*, *J* = 7.5 Hz, Ar–H); ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 24.9 (–COCH₃), 113.2 (Ar C–Br), 122.0, 125.2, 128.4, 132.2 (4 × Ar C), 135.7 (–CO–NH–*C*–), 168.3 (–C=O). Mass spectrum: [*M*+H]⁺ 212.979, C₈H₈BrNO requires 212.979.

Figure 3

The packing in (I), viewed down [100], with all H atoms except H1 omitted for clarity.

 $D_x = 1.713 \text{ Mg m}^{-3}$

Cell parameters from 1977

Mo $K\alpha$ radiation

reflections

 $\theta = 2.9-27.5^{\circ}$ $\mu = 4.89 \text{ mm}^{-1}$

T = 120 (2) K

 $\begin{aligned} R_{\rm int} &= 0.037\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

 $h = -6 \rightarrow 5$

 $k = -15 \rightarrow 15$

 $l = -18 \rightarrow 19$

Block, colourless

 $0.24 \times 0.10 \times 0.07 \; \text{mm}$

1750 reflections with $I > 2\sigma(I)$

Crystal data C_8H_8BrNO $M_r = 214.06$ Monoclinic, $P2_1/n$ a = 4.7790 (1) Å b = 11.9257 (4) Å c = 14.6703 (3) Å $\beta = 96.8173$ (16)° V = 830.19 (4) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2003)

 $T_{\min} = 0.387, T_{\max} = 0.726$ 9212 measured reflections 1905 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + 1.9011P]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.074$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.26	$\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$
1905 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
106 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	Extinction coefficient: 0.0163 (11)
independent and constrained	
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^i$	0.83 (4)	2.10 (4)	2.896 (3)	161 (3)
	4			

Symmetry code: (i) x - 1, y, z.

All the C-bound H atoms were placed in idealized positions (C– H = 0.95–0.98 Å) and refined as riding on their carriers with the constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $U_{iso}(H) = 1.5U_{eq}(\text{methyl})$ carrier) applied. The methyl group was allowed to rotate about the C7–C8 bond as a rigid group. The N-bound H atom was located in a difference map and its position was freely refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*, *DENZO* (Otwinowski & Minor, 1997) and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Mass Spectrometry Service (University of Swansea) and the EPSRC National Crystallography Service (University of Southampton) for data collections.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). *International Tables for Crystallography*, Vol. C, pp. 685–706. Dordrecht: Kluwer.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brown, C. J. (1966). Acta Cryst. 21, 442-445.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pederson, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wasserman, H. J., Ryan, R. R. & Layne, S. P. (1985). Acta Cryst. C41, 783-785.

supporting information

Acta Cryst. (2005). E61, o3156-o3158 [doi:10.1107/S1600536805027492]

N-(2-Bromophenyl)acetamide

Vicki Ronaldson, John. M. D. Storey and William T. A. Harrison

S1. Comment

The title compound, C₈H₈BrNO, (I), (Fig. 1) was prepared as an intermediate in a natural product synthesis.

The dihedral angle between the mean planes of the benzene ring (atoms C1–C6) and the N1/O1/C7/C8 side-chain grouping in (I) is 42.75 (14)°. This is intermediate between the situation in acetanilide [*i.e.* (I) without the Br atom], C₈H₉NO (Brown, 1966; Wasserman *et al.*, 1985), where the aromatic ring and side chain are twisted by 17.6°, and *N*-methylacetanilide, C₉H₁₁NO (Pederson, 1967), where the two equivalent groups of atoms are constrained by symmetry to be perpendicular. The C_{ar}—N (ar = aromatic) bond distances are almost identical in (I) and acetanilide (Brown, 1966), being 1.418 (4) and 1.417 (2) Å respectively, as are the C_c—N (c = carbonyl) distances, at 1.358 (4) and 1.355 (2) Å, respectively. The equivalent distances in *N*-methylacetanilide (Pederson, 1967), where any electronic conjugation between the benzene ring and amine group is presumably impossible because of their perpendicular orientation, are distinctly different, with C_{ar}—N much longer at 1.474 Å and C_c—N significantly shorter at 1.325 Å.

The bond angle sum about N1 in (I) is 360.0° , suggesting that this atom is more or less *sp*²-hybridized. All the other geometrical parameters for (I) lie within their expected ranges (Allen *et al.*, 1995).

The crystal packing in (I) is influenced by an N—H···O hydrogen bond (Table 1 and Fig. 2) that links the molecules into chains propagating in [100]. There are no π - π stacking interactions in (I). The unit-cell packing is shown in Fig. 3.

S2. Experimental

2-Bromoaniline (3.44 g, 20.0 mmol) was added to a solution of acetyl chloride (1.88 g, 24.0 mmol) and DIPEA (*N*,*N*-diisopropylethylamine) (3.12 g, 24.0 mmol) in dry tetrahydrofuran (20 ml) at 273 K. On completion (as monitored by thin-layer chromatography), the reaction mixture was diluted with water (20 ml) and the product was extracted with EtOAc (3 × 20 ml). The organic phase was then washed with water (2 × 20 ml) and brine (20 ml), then dried (MgSO₄) and evaporated under reduced pressure to yield the crude product, which was recrystallized from CH₂Cl₂ to give (I) (yield 97%, 4.13 g) as clear needles; one of these was cut to a block for data collection; m.p. 363–364 K; R_F = 0.12 [hexane/EtOAc (5:1)]. IR (KBr disc, cm⁻¹): v_{max} 3272 (NH), 3159 (Ar—H), 1647 (C=O), 1518 (Ar C=C); ¹H NMR (250 MHz; CDCl₃): δ_H 2.21 (3*H*, *s*, CH₃), 6.97 (1*H*, *t*, *J* = 7.5 Hz, Ar—H), 7.29 (1*H*, *t*, *J* = 7.5 Hz, Ar—H), 7.51 (1*H*, *d*, *J* = 8.0 Hz, Ar—H), 7.61 (1*H*, *bs*, NH), 8.31 (1*H*, *d*, *J* = 7.5 Hz, Ar—H); ¹³C NMR (CDCl₃): δ_C 24.9 (–COCH₃), 113.2 (Ar C—Br), 122.0, 125.2, 128.4, 132.2 (4 × Ar C), 135.7 (–CO—NH—C–), 168.3 (–C=O). Mass spectrum: [*M*+H]⁺ 212.979, C₈H₈BrNO requires 212.979.

S3. Refinement

All the C-bound hydrogen atoms were placed in idealized positions (C—H = 0.95-0.98 Å) and refined as riding on their carriers with the constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $U_{iso}(H) = 1.5U_{eq}(\text{methyl carrier})$ applied. The methyl moiety was allowed to rotate about the C7—C8 bond as a rigid group. The N-bound H atom was located in a difference map and its

position was freely refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

View of (I) (50% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii).

Figure 2

Detail of (I) showing how the N—H···O hydrogen bond (dashed lines) links molecules into a chain. The view direction is perpendicular to the mean plane of the benzene ring of the central molecule, showing that no π - π stacking occurs. All H atoms except atom H1 have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]

Figure 3

Unit cell packing in (I), viewed down [010], with all H atoms except H1 omitted for clarity.

N-(2-Bromophenyl)acetamide

Crystal data

C₈H₈BrNO $M_r = 214.06$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.7790(1) Å *b* = 11.9257 (4) Å *c* = 14.6703 (3) Å $\beta = 96.8173 \ (16)^{\circ}$ V = 830.19 (4) Å³ Z = 4

Data collection

Nonius KappaCCD	9212 measured re
11	
diffractometer	1905 independen
Radiation source: fine-focus sealed tube	1750 reflections v
Graphite monochromator	$R_{\rm int} = 0.037$
ω and φ scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} =$
Absorption correction: multi-scan	$h = -6 \rightarrow 5$
(SADABS; Bruker, 2003)	$k = -15 \rightarrow 15$
$T_{\min} = 0.387, T_{\max} = 0.726$	$l = -18 \rightarrow 19$

F(000) = 424 $D_{\rm x} = 1.713 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1977 reflections $\theta = 2.9 - 27.5^{\circ}$ $\mu = 4.89 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.24 \times 0.10 \times 0.07 \text{ mm}$

reflections nt reflections with $I > 2\sigma(I)$ = 3.3°

Refinement

0	
Refinement on F^2	Hydrogen site location: difmap (N-H) and geom
Least-squares matrix: full	(others)
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent
$wR(F^2) = 0.074$	and constrained refinement
S = 1.26	$w = 1/[\sigma^2(F_o^2) + 1.9011P]$
1905 reflections	where $P = (F_o^2 + 2F_c^2)/3$
106 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.76 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97,
Secondary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0163 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4653 (6)	0.4807 (2)	0.7214 (2)	0.0159 (6)
C2	0.5507 (7)	0.5852 (3)	0.7562 (2)	0.0203 (6)
H2	0.4860	0.6123	0.8109	0.024*
C3	0.7304 (7)	0.6492 (3)	0.7106 (2)	0.0219 (7)
H3	0.7915	0.7203	0.7343	0.026*
C4	0.8223 (7)	0.6099 (3)	0.6300 (2)	0.0205 (6)
H4	0.9479	0.6538	0.5992	0.025*
C5	0.7307 (6)	0.5067 (3)	0.5946 (2)	0.0167 (6)
H5	0.7918	0.4807	0.5390	0.020*
C6	0.5493 (6)	0.4406 (2)	0.63992 (19)	0.0140 (6)
C7	0.6102 (6)	0.2594 (2)	0.56501 (19)	0.0153 (6)
C8	0.4592 (7)	0.1544 (3)	0.5295 (2)	0.0209 (7)
H8A	0.2575	0.1702	0.5151	0.031*
H8B	0.4863	0.0957	0.5765	0.031*
H8C	0.5355	0.1291	0.4739	0.031*
N1	0.4490 (5)	0.3362 (2)	0.60299 (16)	0.0135 (5)
H1	0.280 (8)	0.322 (3)	0.604 (2)	0.017 (9)*
01	0.8634 (4)	0.27188 (19)	0.56131 (16)	0.0229 (5)
Br1	0.23224 (6)	0.39129 (3)	0.78845 (2)	0.02046 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0132 (13)	0.0170 (14)	0.0177 (14)	0.0019 (11)	0.0025 (11)	0.0014 (11)

supporting information

C2	0.0200 (15)	0.0194 (15)	0.0214 (15)	0.0018 (12)	0.0023 (12)	-0.0045 (12)
C3	0.0218 (16)	0.0149 (15)	0.0281 (17)	-0.0019 (12)	-0.0007 (13)	-0.0035 (13)
C4	0.0187 (15)	0.0175 (14)	0.0249 (16)	-0.0034 (12)	0.0012 (12)	0.0037 (13)
C5	0.0158 (14)	0.0193 (15)	0.0154 (14)	-0.0002 (11)	0.0029 (11)	0.0023 (12)
C6	0.0122 (13)	0.0136 (13)	0.0159 (13)	0.0021 (11)	0.0006 (10)	0.0013 (11)
C7	0.0157 (14)	0.0161 (14)	0.0143 (13)	0.0000 (11)	0.0029 (11)	0.0017 (11)
C8	0.0191 (15)	0.0181 (15)	0.0264 (16)	-0.0023 (12)	0.0059 (12)	-0.0065 (13)
N1	0.0107 (12)	0.0141 (12)	0.0164 (12)	-0.0016 (9)	0.0048 (9)	-0.0018 (10)
01	0.0129 (10)	0.0239 (12)	0.0330 (13)	-0.0014 (9)	0.0069 (9)	-0.0054 (10)
Br1	0.02191 (19)	0.02130 (19)	0.01987 (19)	-0.00046 (12)	0.00956 (12)	0.00033 (12)

Geometric parameters (Å, °)

C1—C2	1.390 (4)	С5—Н5	0.9500
C1—C6	1.390 (4)	C6—N1	1.418 (4)
C1—Br1	1.899 (3)	C7—O1	1.227 (4)
C2—C3	1.380 (5)	C7—N1	1.358 (4)
C2—H2	0.9500	C7—C8	1.507 (4)
C3—C4	1.390 (4)	C8—H8A	0.9800
С3—Н3	0.9500	C8—H8B	0.9800
C4—C5	1.387 (4)	C8—H8C	0.9800
C4—H4	0.9500	N1—H1	0.83 (4)
C5—C6	1.397 (4)		
C2—C1—C6	121.6 (3)	C1—C6—C5	118.3 (3)
$C_2 = C_1 = C_0$ $C_2 = C_1 = Br_1$. ,		
C2C1Br1 C6C1Br1	118.5 (2)	C1—C6—N1 C5—C6—N1	120.8 (3)
	119.9 (2)		121.0 (3)
C3-C2-C1	119.3 (3)	01—C7—N1	123.2 (3)
C3—C2—H2	120.3	O1—C7—C8	121.3 (3)
C1—C2—H2	120.3	N1—C7—C8	115.5 (3)
C2—C3—C4	120.3 (3)	C7—C8—H8A	109.5
С2—С3—Н3	119.9	C7—C8—H8B	109.5
C4—C3—H3	119.9	H8A—C8—H8B	109.5
C5—C4—C3	120.0 (3)	C7—C8—H8C	109.5
C5—C4—H4	120.0	H8A—C8—H8C	109.5
C3—C4—H4	120.0	H8B—C8—H8C	109.5
C4—C5—C6	120.6 (3)	C7—N1—C6	124.5 (2)
C4—C5—H5	119.7	C7—N1—H1	118 (2)
С6—С5—Н5	119.7	C6—N1—H1	118 (2)
C6—C1—C2—C3	-2.1 (5)	Br1—C1—C6—N1	3.9 (4)
Br1—C1—C2—C3	177.1 (2)	C4—C5—C6—C1	-0.4 (4)
C1—C2—C3—C4	0.7 (5)	C4—C5—C6—N1	178.4 (3)
C2—C3—C4—C5	0.8 (5)	01—C7—N1—C6	2.2 (5)
C3—C4—C5—C6	-0.9(5)	C8—C7—N1—C6	-179.6(3)
C2-C1-C6-C5	2.0 (4)	C1—C6—N1—C7	-138.6 (3)
Br1—C1—C6—C5	-177.3(2)	C5-C6-N1-C7	42.6 (4)
C2-C1-C6-N1	-176.9(3)		12.0 (1)
62 CI CO-IVI	170.7 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.83 (4)	2.10 (4)	2.896 (3)	161 (3)

Symmetry code: (i) x-1, y, z.