Download citation
Download citation
link to html
The amine N atom of the isatin portion of the title compound (systematic name: 2-oxo-2,3-dihydro-1H-indole-3-carbaldehyde benzoylhydrazone), C15H11N3O2, forms a hydrogen bond with the amide O atom of the benzoyl­hydrazone portion of a symmetry-related mol­ecule, giving rise to a hydrogen-bonded chain structure that propagates by a glide plane along the c axis of the monoclinic unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028692/bt6733sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028692/bt6733Isup2.hkl
Contains datablock I

CCDC reference: 287472

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.125
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

There are a large number of structurally authenticated Schiff bases that are the condensation products of an aroylhydrazine and a carbonyl compound, as noted from the Cambridge Structural Database (Version 5.26; Allen, 2002). Among this number is a sole example of an isatin derivative, the 3-picolinoylhydrazone. Isatin aroylhydrazones are expected to function as a terdentate chelate to metals; however, in nickel bis(1-methylisatin 3-picolinoylhydrazonate), the pyridyl N atom coordinates in place of the amido oxygen atom (Rodrìguez-Argüelles et al., 2004). Isatin 3-benzoylhydrazone, (I) (Fig. 1), is a nearly planar molecule. The 3-picolinoylhydrazone mentioned above is also planar, and the planarity of the two compounds can be attributed to delocalization of the π electrons over the entire molecule through the –N—NH—C(O)– portion. Other Schiff-base derivatives of isatin that have been crystallographically verified include (4-hexylphenyl)imino-1H-indol-2(3H-3 one) (Öztürk et al., 2003), indole-2,3-dione 3-(trimethylammonioacetyl)hydrazone chloride (Sun et al., 2001), indole-2,3-dione 3-(hexamethyleneiminyl)thiosemicarbazone (Bain et al., 1997), 2,3-bis(thiosemicarbazone) (Casas et al., 2000) and indole-2,3-dione β-4-(4-tolyl)thiocarbazone (Revenko et al., 1994). Useful biological properties (Öztürk et al., 2003) are expected of the title and the other Schiff bases. The title compound features an intramolecular hydrogen bond; adjacent molecules are linked by another hydrogen bond to form a chain. The following paper (Ali et al., 2005) describes an orthorhombic polymorph of the title compound.

Experimental top

Benzhydrazide (0.50 g, 3.7 mmol) and isatin (0.54 g, 3.7 mol) were refluxed in ethanol (50 ml) for 2 h. The solid that was formed was filtered off and recrystallized from pyridine to give well defined orange-colored blocks.

Refinement top

The C-bound H atoms were placed at calculated positions (C—H = 0.93 Å), and they were included in the refinement in the riding-model approximation with Uiso(H) set to 1.2Ueq(C). The N-bound H atoms were located in a difference Fourier map and refined with a distance restraint of N—H = 0.86 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of C15H11N3O2. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
2-oxo-2,3-dihydro-1H-indole-3-carbaldehyde benzoylhydrazone top
Crystal data top
C15H11N3O2F(000) = 552
Mr = 265.27Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2811 reflections
a = 8.9279 (6) Åθ = 2.4–26.3°
b = 12.1099 (9) ŵ = 0.10 mm1
c = 11.7567 (9) ÅT = 295 K
β = 95.117 (1)°Block, orange
V = 1266.0 (2) Å30.48 × 0.32 × 0.26 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.1°, θmin = 2.3°
ϕ and ω scansh = 1110
7680 measured reflectionsk = 1515
2762 independent reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1615P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H11N3O2V = 1266.0 (2) Å3
Mr = 265.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9279 (6) ŵ = 0.10 mm1
b = 12.1099 (9) ÅT = 295 K
c = 11.7567 (9) Å0.48 × 0.32 × 0.26 mm
β = 95.117 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
1878 reflections with I > 2σ(I)
7680 measured reflectionsRint = 0.026
2762 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
2762 reflectionsΔρmin = 0.18 e Å3
189 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3608 (1)0.4827 (1)0.6519 (1)0.0507 (3)
O20.3141 (1)0.7066 (1)0.2965 (1)0.0604 (4)
N10.3453 (2)0.5853 (1)0.4910 (1)0.0416 (3)
N20.4491 (1)0.6590 (1)0.5365 (1)0.0384 (3)
N30.4830 (2)0.8517 (1)0.3151 (1)0.0510 (4)
C10.1868 (2)0.4251 (1)0.4983 (1)0.0402 (4)
C20.1148 (2)0.3534 (1)0.5662 (2)0.0515 (4)
C30.0004 (2)0.2862 (2)0.5196 (2)0.0631 (5)
C40.0423 (2)0.2895 (2)0.4056 (2)0.0633 (5)
C50.0287 (2)0.3593 (2)0.3370 (2)0.0681 (6)
C60.1437 (2)0.4272 (2)0.3823 (2)0.0580 (5)
C70.3052 (2)0.4984 (1)0.5548 (1)0.0385 (4)
C80.4794 (2)0.7397 (1)0.4706 (1)0.0370 (3)
C90.4131 (2)0.7611 (1)0.3502 (1)0.0443 (4)
C100.5862 (2)0.8944 (1)0.4013 (1)0.0426 (4)
C110.6755 (2)0.9861 (1)0.3993 (2)0.0554 (5)
C120.7688 (2)1.0091 (2)0.4960 (2)0.0631 (5)
C130.7704 (2)0.9445 (2)0.5928 (2)0.0616 (5)
C140.6787 (2)0.8532 (1)0.5949 (1)0.0488 (4)
C150.5871 (2)0.8272 (1)0.4982 (1)0.0382 (4)
H1n0.302 (2)0.5983 (14)0.424 (1)0.056 (5)*
H3n0.458 (2)0.8803 (16)0.249 (1)0.078 (7)*
H20.14360.35010.64410.062*
H30.04780.23840.56640.076*
H40.11960.24430.37450.076*
H50.00050.36140.25910.082*
H60.19200.47420.33480.070*
H110.67331.03120.33520.066*
H120.83261.06980.49610.076*
H130.83380.96270.65710.074*
H140.67880.80990.66020.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (8)0.0500 (7)0.0325 (6)0.0146 (6)0.0055 (5)0.0012 (5)
O20.0674 (8)0.0662 (8)0.0435 (7)0.0109 (7)0.0187 (6)0.0071 (6)
N10.0452 (8)0.0440 (7)0.0336 (7)0.0064 (6)0.0071 (6)0.0019 (6)
N20.0428 (7)0.0375 (7)0.0340 (7)0.0021 (5)0.0009 (5)0.0009 (5)
N30.0665 (9)0.0520 (9)0.0331 (8)0.0011 (7)0.0041 (7)0.0098 (6)
C10.044 (1)0.038 (1)0.037 (1)0.001 (1)0.002 (1)0.004 (1)
C20.058 (1)0.051 (1)0.045 (1)0.011 (1)0.000 (1)0.001 (1)
C30.063 (1)0.058 (1)0.068 (1)0.020 (1)0.002 (1)0.004 (1)
C40.059 (1)0.052 (1)0.075 (1)0.010 (1)0.016 (1)0.010 (1)
C50.087 (2)0.061 (1)0.052 (1)0.007 (1)0.025 (1)0.007 (1)
C60.077 (1)0.053 (1)0.043 (1)0.013 (1)0.008 (1)0.001 (1)
C70.044 (1)0.039 (1)0.032 (1)0.001 (1)0.002 (1)0.002 (1)
C80.041 (1)0.038 (1)0.031 (1)0.003 (1)0.001 (1)0.002 (1)
C90.051 (1)0.047 (1)0.034 (1)0.003 (1)0.004 (1)0.003 (1)
C100.054 (1)0.039 (1)0.035 (1)0.003 (1)0.005 (1)0.001 (1)
C110.077 (1)0.042 (1)0.049 (1)0.005 (1)0.014 (1)0.006 (1)
C120.080 (1)0.047 (1)0.064 (1)0.021 (1)0.012 (1)0.005 (1)
C130.072 (1)0.058 (1)0.053 (1)0.018 (1)0.003 (1)0.007 (1)
C140.061 (1)0.045 (1)0.039 (1)0.008 (1)0.004 (1)0.000 (1)
C150.046 (1)0.035 (1)0.034 (1)0.002 (1)0.004 (1)0.001 (1)
Geometric parameters (Å, º) top
O1—C71.218 (2)C10—C151.399 (2)
O2—C91.232 (2)C11—C121.376 (3)
N1—C71.358 (2)C12—C131.380 (3)
N1—N21.361 (2)C13—C141.377 (2)
N2—C81.290 (2)C14—C151.376 (2)
N3—C91.345 (2)N1—H1n0.86 (1)
N3—C101.406 (2)N3—H3n0.87 (1)
C1—C21.377 (2)C2—H20.93
C1—C61.383 (2)C3—H30.93
C1—C71.491 (2)C4—H40.93
C2—C31.381 (2)C5—H50.93
C3—C41.361 (3)C6—H60.93
C4—C51.362 (3)C11—H110.93
C5—C61.385 (3)C12—H120.93
C8—C151.449 (2)C13—H130.93
C8—C91.507 (2)C14—H140.93
C10—C111.370 (2)
C7—N1—N2119.7 (1)C13—C14—C15118.6 (2)
C8—N2—N1115.6 (1)C14—C15—C10120.0 (1)
C9—N3—C10111.7 (1)C14—C15—C8133.3 (1)
C2—C1—C6118.7 (2)C10—C15—C8106.7 (1)
C2—C1—C7117.8 (1)C7—N1—H1n122 (1)
C6—C1—C7123.5 (2)N2—N1—H1n118 (1)
C1—C2—C3120.6 (2)C9—N3—H3n121 (1)
C4—C3—C2120.4 (2)C10—N3—H3n127 (1)
C5—C4—C3119.8 (2)C1—C2—H2119.7
C4—C5—C6120.6 (2)C3—C2—H2119.7
C5—C6—C1120.0 (2)C4—C3—H3119.8
O1—C7—N1122.2 (1)C2—C3—H3119.8
O1—C7—C1122.6 (1)C5—C4—H4120.1
N1—C7—C1115.2 (1)C3—C4—H4120.1
N2—C8—C15126.2 (1)C4—C5—H5119.7
N2—C8—C9127.5 (1)C6—C5—H5119.7
C15—C8—C9106.4 (1)C5—C6—H6120.0
O2—C9—N3127.7 (1)C1—C6—H6120.0
O2—C9—C8126.4 (2)C10—C11—H11121.3
N3—C9—C8106.0 (1)C12—C11—H11121.3
C11—C10—C15121.6 (2)C11—C12—H12119.1
C11—C10—N3129.1 (2)C13—C12—H12119.1
C15—C10—N3109.2 (1)C14—C13—H13119.7
C10—C11—C12117.4 (2)C12—C13—H13119.7
C11—C12—C13121.8 (2)C13—C14—H14120.7
C14—C13—C12120.5 (2)C15—C14—H14120.7
C7—N1—N2—C8179.2 (1)C15—C8—C9—O2177.9 (2)
C6—C1—C2—C31.0 (3)N2—C8—C9—N3177.6 (2)
C7—C1—C2—C3177.6 (2)C15—C8—C9—N31.5 (2)
C1—C2—C3—C40.4 (3)C9—N3—C10—C11178.4 (2)
C2—C3—C4—C50.2 (3)C9—N3—C10—C151.3 (2)
C3—C4—C5—C60.1 (3)C15—C10—C11—C121.1 (3)
C4—C5—C6—C10.5 (3)N3—C10—C11—C12179.3 (2)
C2—C1—C6—C51.1 (3)C10—C11—C12—C131.7 (3)
C7—C1—C6—C5177.5 (2)C11—C12—C13—C140.8 (3)
N2—N1—C7—O11.1 (2)C12—C13—C14—C150.7 (3)
N2—N1—C7—C1177.9 (1)C13—C14—C15—C101.2 (2)
C2—C1—C7—O114.9 (2)C13—C14—C15—C8179.9 (2)
C6—C1—C7—O1166.5 (2)C11—C10—C15—C140.3 (2)
C2—C1—C7—N1164.1 (1)N3—C10—C15—C14179.4 (2)
C6—C1—C7—N114.5 (2)C11—C10—C15—C8179.4 (2)
N1—N2—C8—C15178.9 (1)N3—C10—C15—C80.2 (2)
N1—N2—C8—C90.0 (2)N2—C8—C15—C142.7 (3)
C10—N3—C9—O2177.7 (2)C9—C8—C15—C14178.2 (2)
C10—N3—C9—C81.7 (2)N2—C8—C15—C10178.3 (2)
N2—C8—C9—O23.1 (3)C9—C8—C15—C100.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.86 (1)2.00 (1)2.712 (2)139 (2)
N3—H3n···O1i0.87 (1)2.15 (1)2.918 (2)148 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H11N3O2
Mr265.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.9279 (6), 12.1099 (9), 11.7567 (9)
β (°) 95.117 (1)
V3)1266.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7680, 2762, 1878
Rint0.026
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.01
No. of reflections2762
No. of parameters189
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.86 (1)2.00 (1)2.712 (2)139 (2)
N3—H3n···O1i0.87 (1)2.15 (1)2.918 (2)148 (2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds