Download citation
Download citation
link to html
The title mononuclear complex, [Ni(C2H3O2)2(C3H4N2)4], has been prepared and characterized by X-ray structure analysis. The mol­ecule contains a six-coordinate NiII atom displaying distorted octa­hedral coordination geometry defined by the four pyrazole N atoms in the equatorial plane and two O atoms of the carboxyl­ate groups in trans-apical positions. The Ni—N(pyrazole) distances range from 2.074 (2) to 2.097 (2) Å and the Ni—O(acetate) distances are 2.060 (2) and 2.072 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029193/bv6029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029193/bv6029Isup2.hkl
Contains datablock I

CCDC reference: 287489

Key indicators

  • Single-crystal X-ray study
  • T = 301 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.118
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 C15 -O3 -NI1 -O1 90.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 38 C13 -O1 -NI1 -O3 92.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 47 C1 -N1 -NI1 -N3 -72.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 48 N5 -N1 -NI1 -N3 104.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 57 C7 -N3 -NI1 -N1 -99.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 58 N7 -N3 -NI1 -N1 77.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 71 C4 -N2 -NI1 -N4 7.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 72 N6 -N2 -NI1 -N4 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 81 C10 -N4 -NI1 -N2 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 82 N8 -N4 -NI1 -N2 9.00 7.00 1.555 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.87(3), Rep 0.874(10) ...... 3.00 su-Rat N8 -H8A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.87(3), Rep 0.874(10) ...... 3.00 su-Rat N8 -H8A 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 12 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Complexes containing pyrazole and imidazole ligands present several aspects of main interest. In recent years, we have investigated the coordination chemistry of metal complexes with N-containing heterocyclic derivatives (Ma˘slejová et al., 2001; Bo˘ca et al., 2003; Svoboda et al., 2001). Pyrazole (pzH) forms a variety of metal complexes (Otieno et al., 2002; Steel, 1990; Trofimenko, 1972, 1986). There has been only one report of the crystal structure of a hydrate of [Ni(ac)2(pzH)4] (Doring et al., 1996).

The structure and properties of Ni complexes with N-containing heterocyclic derivatives have attracted much scientific attention due to their potentially useful magnetic properties. Concerning their crystal structure, the N-bound H atom in pyrazole complexes is commonly involved in hydrogen bonds, giving rise to supramolecular arrangements which are related to one of the big challenges of chemistry, that is the understanding and control of the organization of molecules (Braga, 2000). The carboxylate ion is a versatile ligand frequently used for designing complexes with desired magnetic properties. The title compound, (I), was obtained from the reaction of nickel(II) acetate tetrahydrate and an excess of pyrazole, the analogous diacetatotetraimidazolenickel(II) complex (Naumov et al., 2000) is obtained in aq different fashion.

A series of nickel(II) complexes has been prepared possessing a variety of coordination spheres around the central NiII ion for the study of the magnetic anisotropy in NiII complexes (Ma˘slejová et al., 2003). The magnetic properties of (I) were studied down to 2 K (susceptibility and magnetization measurements). It was shown that the complex exhibits an increased magnetic anisotropy (expressed through the axial zero-field splitting parameter D); this is determined by the heteroleptic coordination sphere containing ligands of a different crystal-field strength (Papánková et al., 2005).

The molecular structure of [Ni(ac)2(pzH)4] consists of discrete monomeric units with the NiII atom in a distorted trans-octahedral configuration defined by two acetate anions and four neutral pyrazole ligands. The Ni—O(acetate) distances range from 2.060 (2) to 2.072 (2) Å and the Ni—N(pyrazole) distances are 2.082 (2) and 2.097 (2) Å. All pyrazole NH groups form intramolecular hydrogen bonds, giving rise to seven-membered rings incorporating the Ni atoms. The short intramolecular N—H···O hydrogen bonds [H···O = 1.91 and 2.04 Å, N···O = 2.744 (3)–2.860 (4) Å and N—H···O = 156–167°] are formed with non-coordinating carboxylate O atoms lying in apical positions and H atoms of the NH groups in pyrazole molecule. As expected, the mean C—O bond distance to the coordinating O atom is 1.251 Å, longer than that to the uncoordinated O atom (mean value = 1.241 Å). Molecules with N—H···O hydrogen bonds form rows connected by van der Waals interactions.

Experimental top

The reaction of Ni(CH3COO)2·4H2O with a fourfold excess of pyrazole in warm dried ethanol is rapid at room temperature, leading to the precipitation of [Ni(ac)2(pzH)4]. Single blue crystals of (I) were obtained by a slow evaporation at room temperature after recrystallization.

Refinement top

H atoms on C atoms were positioned geometrically and treated as riding atoms (C–H = 0.93 Å). H atoms on N atoms were located in a difference Fourier map and the N—H distances constrained to 0.86 Å. All Uiso(H) values were set at 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997; Farrugia, 2005); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
Bis(acetato-κO)tetrakis(1H-pyrazole-κN1)nickel(II) top
Crystal data top
[Ni(C2H3O2)2(C3H4N2)4]F(000) = 936
Mr = 449.13Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.925 (5) ÅCell parameters from 401 reflections
b = 14.920 (7) Åθ = 2.5–13.7°
c = 13.969 (7) ŵ = 0.99 mm1
β = 98.97 (5)°T = 301 K
V = 2043.2 (17) Å3Prism, blue
Z = 40.54 × 0.52 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
4173 independent reflections
Radiation source: fine-focus sealed tube3171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
h = 1212
Tmin = 0.617, Tmax = 0.693k = 1818
12234 measured reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0732P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
4173 reflectionsΔρmax = 0.62 e Å3
275 parametersΔρmin = 0.47 e Å3
4 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (10)
Crystal data top
[Ni(C2H3O2)2(C3H4N2)4]V = 2043.2 (17) Å3
Mr = 449.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.925 (5) ŵ = 0.99 mm1
b = 14.920 (7) ÅT = 301 K
c = 13.969 (7) Å0.54 × 0.52 × 0.40 mm
β = 98.97 (5)°
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
4173 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
3171 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.693Rint = 0.037
12234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0424 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.62 e Å3
4173 reflectionsΔρmin = 0.47 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1691 (3)0.31447 (19)0.45179 (19)0.0534 (7)
H11.09400.29800.48020.064*
C21.3030 (3)0.3035 (2)0.4946 (2)0.0620 (8)
H21.33470.27910.55520.074*
C31.3776 (3)0.3356 (2)0.4298 (2)0.0555 (7)
H31.47230.33710.43700.067*
C41.0144 (3)0.17421 (18)0.2297 (2)0.0478 (7)
H41.08890.17990.19710.057*
C50.9591 (3)0.0931 (2)0.2529 (2)0.0571 (8)
H50.98830.03570.23990.069*
C60.8550 (3)0.11549 (18)0.2979 (2)0.0553 (7)
H60.79690.07590.32280.066*
C70.8144 (3)0.42861 (18)0.06342 (18)0.0460 (6)
H70.88820.44270.03260.055*
C80.6803 (3)0.4319 (2)0.0198 (2)0.0517 (7)
H80.64690.44810.04370.062*
C90.6084 (3)0.40654 (19)0.0888 (2)0.0480 (7)
H90.51390.40220.08200.058*
C100.9822 (3)0.5836 (2)0.2962 (3)0.0660 (9)
H100.91620.57960.33650.079*
C111.0338 (4)0.6636 (2)0.2628 (3)0.0905 (14)
H111.00710.72160.27550.109*
C121.1285 (4)0.6403 (2)0.2094 (3)0.0876 (13)
H121.18140.67860.17820.105*
C130.7775 (3)0.39649 (17)0.40042 (18)0.0416 (6)
C140.7484 (4)0.4458 (2)0.4880 (2)0.0697 (9)
H14A0.75180.50910.47670.084*
H14B0.81550.43010.54270.084*
H14C0.65940.42970.50100.084*
C151.2084 (3)0.36299 (18)0.11952 (18)0.0412 (6)
C161.2282 (4)0.3189 (2)0.0277 (2)0.0747 (10)
H16A1.15970.33940.02390.090*
H16B1.22070.25510.03440.090*
H16C1.31690.33350.01300.090*
N11.1613 (2)0.35132 (14)0.36552 (15)0.0402 (5)
N20.9476 (2)0.24187 (13)0.25974 (14)0.0364 (5)
N30.82483 (19)0.40287 (13)0.15481 (14)0.0353 (5)
N41.0424 (2)0.51580 (14)0.26129 (15)0.0419 (5)
N51.2914 (2)0.36493 (15)0.35332 (16)0.0422 (5)
H5A1.308 (3)0.3804 (17)0.2963 (11)0.051*
N60.8491 (2)0.20429 (14)0.30111 (17)0.0448 (5)
H6A0.791 (2)0.2395 (15)0.3223 (19)0.054*
N70.6954 (2)0.38877 (13)0.16832 (15)0.0373 (5)
H7A0.677 (3)0.3782 (17)0.2244 (11)0.045*
N81.1321 (3)0.55219 (17)0.2098 (2)0.0615 (7)
H8A1.182 (3)0.5171 (18)0.180 (2)0.074*
O10.89043 (19)0.41040 (13)0.37442 (13)0.0484 (5)
O20.68824 (19)0.34520 (13)0.35833 (13)0.0480 (5)
O31.09539 (17)0.35029 (13)0.14677 (13)0.0457 (4)
O41.30204 (19)0.40919 (15)0.16253 (14)0.0548 (5)
Ni10.99398 (3)0.378992 (18)0.26099 (2)0.03349 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0589 (18)0.0571 (18)0.0416 (15)0.0110 (14)0.0001 (13)0.0089 (12)
C20.074 (2)0.0550 (19)0.0488 (17)0.0030 (16)0.0178 (16)0.0065 (13)
C30.0462 (16)0.0540 (18)0.0602 (19)0.0047 (14)0.0108 (14)0.0073 (14)
C40.0443 (15)0.0411 (15)0.0584 (17)0.0028 (12)0.0092 (13)0.0025 (12)
C50.0720 (19)0.0339 (14)0.066 (2)0.0066 (14)0.0123 (16)0.0018 (13)
C60.0649 (19)0.0364 (15)0.066 (2)0.0070 (13)0.0161 (16)0.0066 (13)
C70.0456 (15)0.0532 (16)0.0400 (14)0.0023 (12)0.0086 (12)0.0097 (12)
C80.0469 (16)0.0635 (19)0.0415 (15)0.0078 (14)0.0029 (13)0.0056 (13)
C90.0365 (14)0.0523 (16)0.0521 (17)0.0019 (12)0.0034 (12)0.0003 (13)
C100.0516 (18)0.0484 (18)0.098 (3)0.0011 (15)0.0110 (17)0.0169 (18)
C110.078 (3)0.0311 (17)0.156 (4)0.0087 (17)0.004 (3)0.011 (2)
C120.074 (3)0.047 (2)0.134 (4)0.0098 (19)0.007 (3)0.028 (2)
C130.0495 (16)0.0416 (14)0.0358 (13)0.0045 (12)0.0127 (12)0.0015 (11)
C140.080 (2)0.072 (2)0.062 (2)0.0020 (18)0.0272 (18)0.0240 (16)
C150.0416 (14)0.0464 (15)0.0373 (14)0.0018 (12)0.0111 (11)0.0042 (11)
C160.077 (2)0.091 (3)0.063 (2)0.0204 (19)0.0313 (18)0.0299 (18)
N10.0364 (11)0.0433 (12)0.0392 (12)0.0053 (9)0.0000 (9)0.0019 (9)
N20.0364 (10)0.0362 (11)0.0362 (11)0.0038 (9)0.0049 (9)0.0010 (8)
N30.0319 (10)0.0385 (11)0.0352 (11)0.0008 (9)0.0042 (9)0.0017 (8)
N40.0412 (11)0.0362 (12)0.0468 (12)0.0063 (9)0.0022 (9)0.0019 (9)
N50.0350 (11)0.0504 (13)0.0402 (12)0.0003 (10)0.0027 (10)0.0025 (10)
N60.0486 (13)0.0367 (12)0.0519 (13)0.0036 (10)0.0164 (11)0.0025 (10)
N70.0316 (11)0.0438 (12)0.0367 (11)0.0024 (9)0.0059 (9)0.0021 (9)
N80.0656 (17)0.0471 (16)0.0725 (18)0.0136 (13)0.0131 (14)0.0056 (12)
O10.0478 (11)0.0538 (12)0.0452 (11)0.0070 (9)0.0123 (9)0.0097 (9)
O20.0494 (11)0.0528 (11)0.0442 (11)0.0084 (9)0.0147 (9)0.0043 (9)
O30.0390 (10)0.0561 (11)0.0440 (10)0.0086 (8)0.0119 (8)0.0031 (8)
O40.0444 (11)0.0711 (13)0.0521 (12)0.0157 (10)0.0171 (9)0.0105 (10)
Ni10.0318 (2)0.0338 (2)0.0341 (2)0.00338 (12)0.00281 (13)0.00029 (12)
Geometric parameters (Å, º) top
C1—N11.316 (3)C12—H120.9300
C1—C21.379 (4)C13—O21.246 (3)
C1—H10.9300C13—O11.248 (3)
C2—C31.344 (5)C13—C141.494 (4)
C2—H20.9300C14—H14A0.9600
C3—N51.334 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—N21.312 (3)C15—O41.235 (3)
C4—C51.388 (4)C15—O31.254 (3)
C4—H40.9300C15—C161.482 (4)
C5—C61.334 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—N61.327 (3)C16—H16C0.9600
C6—H60.9300N1—N51.344 (3)
C7—N31.322 (3)N1—Ni12.074 (2)
C7—C81.375 (4)N2—N61.334 (3)
C7—H70.9300N2—Ni12.097 (2)
C8—C91.340 (4)N3—N71.344 (3)
C8—H80.9300N3—Ni12.090 (2)
C9—N71.323 (3)N4—N81.343 (3)
C9—H90.9300N4—Ni12.097 (2)
C10—N41.307 (4)N5—H5A0.868 (10)
C10—C111.407 (5)N6—H6A0.864 (10)
C10—H100.9300N7—H7A0.845 (10)
C11—C121.334 (6)N8—H8A0.874 (10)
C11—H110.9300O1—Ni12.072 (2)
C12—N81.315 (4)O3—Ni12.060 (2)
N1—C1—C2111.2 (3)C15—C16—H16A109.5
N1—C1—H1124.4C15—C16—H16B109.5
C2—C1—H1124.4H16A—C16—H16B109.5
C3—C2—C1105.1 (3)C15—C16—H16C109.5
C3—C2—H2127.5H16A—C16—H16C109.5
C1—C2—H2127.5H16B—C16—H16C109.5
N5—C3—C2107.7 (3)C1—N1—N5105.0 (2)
N5—C3—H3126.1C1—N1—Ni1130.86 (19)
C2—C3—H3126.1N5—N1—Ni1124.06 (17)
N2—C4—C5111.0 (3)C4—N2—N6104.9 (2)
N2—C4—H4124.5C4—N2—Ni1129.20 (18)
C5—C4—H4124.5N6—N2—Ni1125.54 (16)
C6—C5—C4104.8 (3)C7—N3—N7104.4 (2)
C6—C5—H5127.6C7—N3—Ni1131.95 (18)
C4—C5—H5127.6N7—N3—Ni1123.59 (16)
N6—C6—C5107.9 (3)C10—N4—N8105.4 (3)
N6—C6—H6126.0C10—N4—Ni1129.5 (2)
C5—C6—H6126.0N8—N4—Ni1124.27 (18)
N3—C7—C8111.3 (2)C3—N5—N1111.0 (2)
N3—C7—H7124.4C3—N5—H5A129 (2)
C8—C7—H7124.4N1—N5—H5A118 (2)
C9—C8—C7105.0 (2)C6—N6—N2111.5 (2)
C9—C8—H8127.5C6—N6—H6A130.8 (19)
C7—C8—H8127.5N2—N6—H6A117.6 (19)
N7—C9—C8108.0 (2)C9—N7—N3111.3 (2)
N7—C9—H9126.0C9—N7—H7A128 (2)
C8—C9—H9126.0N3—N7—H7A120 (2)
N4—C10—C11108.8 (3)C12—N8—N4112.7 (3)
N4—C10—H10125.6C12—N8—H8A128 (2)
C11—C10—H10125.6N4—N8—H8A119 (2)
C12—C11—C10106.8 (3)C13—O1—Ni1139.44 (18)
C12—C11—H11126.6C15—O3—Ni1140.53 (18)
C10—C11—H11126.6O3—Ni1—O1178.77 (7)
N8—C12—C11106.2 (4)O3—Ni1—N194.00 (9)
N8—C12—H12126.9O1—Ni1—N186.83 (9)
C11—C12—H12126.9O3—Ni1—N385.48 (8)
O2—C13—O1124.7 (2)O1—Ni1—N393.72 (9)
O2—C13—C14118.4 (3)N1—Ni1—N3178.33 (7)
O1—C13—C14117.0 (3)O3—Ni1—N285.63 (8)
C13—C14—H14A109.5O1—Ni1—N295.31 (8)
C13—C14—H14B109.5N1—Ni1—N287.84 (8)
H14A—C14—H14B109.5N3—Ni1—N290.54 (8)
C13—C14—H14C109.5O3—Ni1—N493.70 (8)
H14A—C14—H14C109.5O1—Ni1—N485.36 (8)
H14B—C14—H14C109.5N1—Ni1—N491.97 (9)
O4—C15—O3125.3 (2)N3—Ni1—N489.65 (8)
O4—C15—C16118.6 (2)N2—Ni1—N4179.29 (8)
O3—C15—C16116.2 (3)
N1—C1—C2—C30.0 (4)C13—O1—Ni1—N4132.6 (3)
C1—C2—C3—N50.7 (3)C1—N1—Ni1—O3144.0 (3)
N2—C4—C5—C60.4 (3)N5—N1—Ni1—O332.0 (2)
C4—C5—C6—N60.0 (4)C1—N1—Ni1—O136.9 (3)
N3—C7—C8—C90.2 (3)N5—N1—Ni1—O1147.1 (2)
C7—C8—C9—N70.4 (3)C1—N1—Ni1—N372 (3)
N4—C10—C11—C121.6 (4)N5—N1—Ni1—N3104 (3)
C10—C11—C12—N80.7 (5)C1—N1—Ni1—N258.6 (3)
C2—C1—N1—N50.6 (3)N5—N1—Ni1—N2117.4 (2)
C2—C1—N1—Ni1176.0 (2)C1—N1—Ni1—N4122.1 (3)
C5—C4—N2—N60.6 (3)N5—N1—Ni1—N461.9 (2)
C5—C4—N2—Ni1172.26 (18)C7—N3—Ni1—O327.0 (2)
C8—C7—N3—N70.7 (3)N7—N3—Ni1—O3149.18 (19)
C8—C7—N3—Ni1177.40 (18)C7—N3—Ni1—O1152.1 (2)
C11—C10—N4—N81.7 (4)N7—N3—Ni1—O131.75 (19)
C11—C10—N4—Ni1168.5 (2)C7—N3—Ni1—N199 (3)
C2—C3—N5—N11.1 (3)N7—N3—Ni1—N177 (3)
C1—N1—N5—C31.1 (3)C7—N3—Ni1—N2112.5 (2)
Ni1—N1—N5—C3175.82 (18)N7—N3—Ni1—N263.61 (18)
C5—C6—N6—N20.4 (3)C7—N3—Ni1—N466.8 (2)
C4—N2—N6—C60.7 (3)N7—N3—Ni1—N4117.08 (18)
Ni1—N2—N6—C6172.57 (19)C4—N2—Ni1—O326.4 (2)
C8—C9—N7—N30.9 (3)N6—N2—Ni1—O3162.1 (2)
C7—N3—N7—C91.0 (3)C4—N2—Ni1—O1154.4 (2)
Ni1—N3—N7—C9178.03 (18)N6—N2—Ni1—O117.1 (2)
C11—C12—N8—N40.3 (4)C4—N2—Ni1—N167.8 (2)
C10—N4—N8—C121.3 (4)N6—N2—Ni1—N1103.8 (2)
Ni1—N4—N8—C12169.5 (2)C4—N2—Ni1—N3111.8 (2)
O2—C13—O1—Ni16.5 (5)N6—N2—Ni1—N376.6 (2)
C14—C13—O1—Ni1173.1 (2)C4—N2—Ni1—N47 (7)
O4—C15—O3—Ni14.6 (5)N6—N2—Ni1—N4178 (100)
C16—C15—O3—Ni1175.9 (2)C10—N4—Ni1—O3158.4 (3)
C15—O3—Ni1—O190 (3)N8—N4—Ni1—O310.2 (2)
C15—O3—Ni1—N142.7 (3)C10—N4—Ni1—O120.8 (3)
C15—O3—Ni1—N3138.9 (3)N8—N4—Ni1—O1170.6 (2)
C15—O3—Ni1—N2130.2 (3)C10—N4—Ni1—N1107.5 (3)
C15—O3—Ni1—N449.5 (3)N8—N4—Ni1—N184.0 (2)
C13—O1—Ni1—O392 (3)C10—N4—Ni1—N373.0 (3)
C13—O1—Ni1—N1135.2 (3)N8—N4—Ni1—N395.6 (2)
C13—O1—Ni1—N343.2 (3)C10—N4—Ni1—N2178 (100)
C13—O1—Ni1—N247.7 (3)N8—N4—Ni1—N29 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.87 (1)1.91 (1)2.764 (3)167 (3)
N6—H6A···O20.86 (1)1.99 (1)2.829 (3)165 (3)
N7—H7A···O20.85 (1)1.92 (1)2.744 (3)164 (3)
N8—H8A···O40.87 (1)2.04 (2)2.860 (4)156 (3)

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)2(C3H4N2)4]
Mr449.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)301
a, b, c (Å)9.925 (5), 14.920 (7), 13.969 (7)
β (°) 98.97 (5)
V3)2043.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.54 × 0.52 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.617, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
12234, 4173, 3171
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03
No. of reflections4173
No. of parameters275
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997; Farrugia, 2005), SHELXL97.

Selected bond lengths (Å) top
N1—Ni12.074 (2)N4—Ni12.097 (2)
N2—Ni12.097 (2)O1—Ni12.072 (2)
N3—Ni12.090 (2)O3—Ni12.060 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.868 (10)1.910 (12)2.764 (3)167 (3)
N6—H6A···O20.864 (10)1.986 (12)2.829 (3)165 (3)
N7—H7A···O20.845 (10)1.922 (13)2.744 (3)164 (3)
N8—H8A···O40.874 (10)2.038 (17)2.860 (4)156 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds