Download citation
Download citation
link to html
In the title compound, [Zn(C15H15N4)Cl3], the ZnII atom is in a distorted tetra­hedral environment, coordinated by three Cl atoms and a pyridine N atom. In the crystal packing, the mol­ecules are linked by C—H...Cl hydrogen bonds into a sheet-like structure parallel to the ac plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029971/ci6651sup1.cif
Contains datablocks 050524b, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029971/ci6651Isup2.hkl
Contains datablock I

CCDC reference: 287516

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.037
  • wR factor = 0.062
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C13
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C15 H15 Cl3 N4 Zn1 Atom count from _chemical_formula_moiety: REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.39 From the CIF: _reflns_number_total 3615 Count of symmetry unique reflns 2091 Completeness (_total/calc) 172.88% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1524 Fraction of Friedel pairs measured 0.729 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Since the discovery of stable imidazoline-2-ylenes by Arduengo in 1991 (Arduengo et al., 1991), much interest has been focused on the chemistry of N-heterocyclic carbenes (NHCs) and their metal complexes. In recent years, a number of metal complexes incorporating novel mono-, bi- and tridentate carbene ligands have been synthesized and structurally investigated. Transiton metal complexes of chelating carbene ligands containing pyridine units have received a lot of attention owing to their potential applications in organometallic chemistry and homogeneous catalysis (Chen & Lin,2000; Danopoulos et al., 2003; Poyatos et al., 2003). As a functionalized imidazolium salt, 1,3-di(2-picolyl)imidazolium chloride and its palladium carbene complexes have been prepared and structurally investigated (Magill et al., 2001). Recently, the structures of mono- and trinuclear silver, heteronuclear silver and gold, mononuclear mercury carbene complexes have been reported (Catalano et al., 2004). Here, the structure of a ZnII complex of 1,3-di(2-picolyl)imidazolium chloride, (I), is presented.

The ZnII atom is in a distorted tetrahedral environment with three Cl atoms and a pyridine N atom (Fig. 1). The bond angles around the metal atom range from 105.14 (8) to 114.22 (4)° (Table 1). The planes through the N3/C5–C9 and N4/C11–C15 pyridine rings form dihedral angles of 84.1 (1) and 70.8 (1)°, respectively, with the central five-membered ring. The crystal structure is stabilized by C—H···Cl hydrogen bonds (Table 2). The hydrogen bonds link the molecules into a sheet-like structure parallel to the ac plane.

Experimental top

1,3-di(2-picolyl)imidazolium chloride (0.286 g, 1.0 mmol) was added to a solution of anhydrous ZnCl2 (0.136 g, 1.0 mmol) in methanol (20 ml), at room temperature to obtain compound (I) as pale brown powder (yield: 90%). Single crystals were grown by slow evaporation of methanol solution. Analysis calculated for C15H15Cl3N4Zn: C 42.59, H 3.57, N 13.24%; found: C 42.49, H 3.65, N 13.32%. 1H NMR(δ, p.p.m.): 9.39 (s, 1H), 8.52 (s, 2H), 7.78–7.89 (m, 4H), 7.36–7.47 (m, 4H), 5.58–5.59 (d, 4H).

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
(I) top
Crystal data top
[Zn(C15H15N4)Cl3]F(000) = 856
Mr = 423.03Dx = 1.579 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2564 reflections
a = 8.3222 (12) Åθ = 2.8–22.6°
b = 13.3871 (18) ŵ = 1.83 mm1
c = 15.977 (2) ÅT = 294 K
V = 1780.0 (4) Å3Block, brown
Z = 40.22 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3615 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.650, Tmax = 0.774k = 1116
10139 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0127P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3615 reflectionsΔρmax = 0.34 e Å3
208 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983); 1529 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (13)
Crystal data top
[Zn(C15H15N4)Cl3]V = 1780.0 (4) Å3
Mr = 423.03Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3222 (12) ŵ = 1.83 mm1
b = 13.3871 (18) ÅT = 294 K
c = 15.977 (2) Å0.22 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2630 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.774Rint = 0.047
10139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.34 e Å3
S = 0.99Δρmin = 0.25 e Å3
3615 reflectionsAbsolute structure: Flack (1983); 1529 Friedel pairs
208 parametersAbsolute structure parameter: 0.015 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.07466 (5)0.66430 (3)0.34702 (3)0.03838 (12)
Cl10.18937 (13)0.79383 (8)0.28107 (7)0.0584 (3)
Cl20.06791 (12)0.67910 (8)0.48658 (6)0.0554 (3)
Cl30.16608 (11)0.62738 (7)0.29015 (7)0.0514 (3)
N10.5183 (3)0.5658 (2)0.4705 (2)0.0392 (8)
N20.6904 (4)0.5165 (2)0.56160 (19)0.0418 (8)
N30.2225 (3)0.5421 (2)0.31809 (17)0.0342 (7)
N40.9282 (4)0.4088 (2)0.4814 (2)0.0535 (8)
C10.6708 (4)0.5712 (3)0.4933 (2)0.0411 (10)
H10.75070.60730.46600.049*
C20.4394 (5)0.5048 (3)0.5258 (3)0.0540 (11)
H20.33080.48860.52460.065*
C30.5462 (5)0.4733 (3)0.5812 (3)0.0539 (11)
H30.52670.42980.62540.065*
C40.4481 (4)0.6128 (3)0.3965 (2)0.0423 (10)
H4A0.53010.65030.36690.051*
H4B0.36440.65900.41330.051*
C50.3784 (4)0.5342 (2)0.3394 (2)0.0362 (9)
C60.4711 (4)0.4553 (3)0.3124 (3)0.0470 (11)
H60.57800.45050.32880.056*
C70.4052 (5)0.3840 (3)0.2616 (3)0.0532 (11)
H70.46730.33110.24220.064*
C80.2470 (5)0.3918 (3)0.2397 (3)0.0553 (12)
H80.19920.34400.20560.066*
C90.1603 (5)0.4715 (3)0.2690 (2)0.0456 (10)
H90.05270.47650.25390.055*
C100.8431 (4)0.5002 (3)0.6042 (2)0.0461 (11)
H10A0.82250.48190.66190.055*
H10B0.90380.56210.60430.055*
C110.9428 (5)0.4193 (3)0.5633 (2)0.0429 (10)
C121.0475 (5)0.3641 (3)0.6108 (3)0.0606 (12)
H121.05270.37310.66840.073*
C131.1433 (6)0.2961 (4)0.5723 (4)0.0850 (16)
H131.21490.25750.60320.102*
C141.1327 (5)0.2850 (4)0.4862 (4)0.0777 (16)
H141.19890.24030.45800.093*
C151.0227 (5)0.3413 (4)0.4438 (3)0.0646 (13)
H151.01290.33240.38630.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0305 (2)0.0366 (2)0.0480 (3)0.0008 (2)0.0005 (2)0.0060 (2)
Cl10.0526 (7)0.0502 (7)0.0723 (8)0.0096 (5)0.0019 (6)0.0103 (6)
Cl20.0549 (6)0.0620 (7)0.0494 (6)0.0098 (6)0.0096 (6)0.0156 (5)
Cl30.0333 (5)0.0563 (7)0.0647 (7)0.0006 (5)0.0071 (5)0.0126 (6)
N10.0315 (18)0.043 (2)0.044 (2)0.0023 (14)0.0033 (15)0.0010 (17)
N20.042 (2)0.044 (2)0.039 (2)0.0014 (16)0.0025 (17)0.0040 (17)
N30.0320 (17)0.0343 (18)0.0362 (19)0.0023 (13)0.0003 (14)0.0040 (15)
N40.061 (2)0.053 (2)0.047 (2)0.006 (2)0.005 (2)0.0003 (18)
C10.034 (2)0.044 (2)0.046 (2)0.0008 (19)0.002 (2)0.002 (2)
C20.036 (2)0.072 (3)0.055 (3)0.016 (2)0.009 (3)0.006 (2)
C30.056 (3)0.068 (3)0.038 (2)0.003 (2)0.007 (3)0.006 (2)
C40.032 (2)0.039 (2)0.056 (3)0.0009 (18)0.010 (2)0.002 (2)
C50.035 (2)0.034 (2)0.040 (2)0.0009 (15)0.0034 (18)0.001 (2)
C60.030 (2)0.048 (3)0.063 (3)0.0090 (18)0.0030 (19)0.002 (2)
C70.049 (3)0.038 (2)0.072 (3)0.007 (2)0.007 (2)0.011 (2)
C80.052 (3)0.047 (3)0.067 (3)0.005 (2)0.004 (2)0.019 (2)
C90.038 (2)0.047 (3)0.052 (3)0.002 (2)0.010 (2)0.009 (2)
C100.047 (2)0.057 (3)0.034 (2)0.002 (2)0.012 (2)0.001 (2)
C110.044 (2)0.039 (2)0.046 (3)0.004 (2)0.005 (2)0.0031 (19)
C120.061 (3)0.065 (3)0.055 (3)0.013 (2)0.010 (2)0.003 (2)
C130.072 (3)0.072 (4)0.111 (5)0.021 (3)0.015 (4)0.008 (4)
C140.054 (3)0.063 (3)0.117 (5)0.013 (2)0.010 (3)0.014 (4)
C150.069 (3)0.058 (3)0.067 (3)0.005 (3)0.013 (2)0.013 (3)
Geometric parameters (Å, º) top
Zn1—N32.099 (3)C4—H4B0.97
Zn1—Cl22.2393 (11)C5—C61.376 (4)
Zn1—Cl12.2424 (11)C6—C71.368 (5)
Zn1—Cl32.2548 (11)C6—H60.93
N1—C11.323 (4)C7—C81.366 (5)
N1—C21.370 (4)C7—H70.93
N1—C41.462 (4)C8—C91.371 (5)
N2—C11.324 (4)C8—H80.93
N2—C31.368 (4)C9—H90.93
N2—C101.458 (4)C10—C111.513 (5)
N3—C91.333 (4)C10—H10A0.97
N3—C51.346 (4)C10—H10B0.97
N4—C111.321 (5)C11—C121.371 (5)
N4—C151.340 (5)C12—C131.358 (6)
C1—H10.93C12—H120.93
C2—C31.323 (5)C13—C141.387 (7)
C2—H20.93C13—H130.93
C3—H30.93C14—C151.366 (6)
C4—C51.509 (5)C14—H140.93
C4—H4A0.97C15—H150.93
N3—Zn1—Cl2107.64 (8)C7—C6—C5119.8 (3)
N3—Zn1—Cl1104.47 (8)C7—C6—H6120.1
Cl2—Zn1—Cl1114.22 (4)C5—C6—H6120.1
N3—Zn1—Cl3105.14 (8)C8—C7—C6119.0 (4)
Cl2—Zn1—Cl3113.48 (4)C8—C7—H7120.5
Cl1—Zn1—Cl3111.00 (4)C6—C7—H7120.5
C1—N1—C2108.3 (3)C7—C8—C9118.6 (4)
C1—N1—C4125.6 (3)C7—C8—H8120.7
C2—N1—C4126.0 (3)C9—C8—H8120.7
C1—N2—C3108.3 (3)N3—C9—C8123.3 (4)
C1—N2—C10125.0 (3)N3—C9—H9118.4
C3—N2—C10126.5 (3)C8—C9—H9118.4
C9—N3—C5117.9 (3)N2—C10—C11112.5 (3)
C9—N3—Zn1117.1 (2)N2—C10—H10A109.1
C5—N3—Zn1124.8 (2)C11—C10—H10A109.1
C11—N4—C15117.5 (4)N2—C10—H10B109.1
N1—C1—N2108.3 (4)C11—C10—H10B109.1
N1—C1—H1125.8H10A—C10—H10B107.8
N2—C1—H1125.8N4—C11—C12123.4 (4)
C3—C2—N1107.4 (4)N4—C11—C10116.9 (3)
C3—C2—H2126.3C12—C11—C10119.6 (4)
N1—C2—H2126.3C13—C12—C11118.9 (4)
C2—C3—N2107.5 (4)C13—C12—H12120.5
C2—C3—H3126.2C11—C12—H12120.5
N2—C3—H3126.2C12—C13—C14118.9 (5)
N1—C4—C5110.0 (3)C12—C13—H13120.6
N1—C4—H4A109.7C14—C13—H13120.6
C5—C4—H4A109.7C15—C14—C13118.5 (5)
N1—C4—H4B109.7C15—C14—H14120.8
C5—C4—H4B109.7C13—C14—H14120.8
H4A—C4—H4B108.2N4—C15—C14122.9 (4)
N3—C5—C6121.4 (3)N4—C15—H15118.6
N3—C5—C4117.9 (3)C14—C15—H15118.6
C6—C5—C4120.6 (3)
Cl2—Zn1—N3—C9126.2 (2)N1—C4—C5—N3123.9 (3)
Cl1—Zn1—N3—C9112.0 (2)N1—C4—C5—C654.0 (5)
Cl3—Zn1—N3—C94.9 (3)N3—C5—C6—C71.3 (6)
Cl2—Zn1—N3—C559.8 (3)C4—C5—C6—C7179.2 (3)
Cl1—Zn1—N3—C562.0 (3)C5—C6—C7—C81.2 (6)
Cl3—Zn1—N3—C5178.9 (3)C6—C7—C8—C90.6 (7)
C2—N1—C1—N20.6 (4)C5—N3—C9—C80.2 (5)
C4—N1—C1—N2177.7 (3)Zn1—N3—C9—C8174.6 (3)
C3—N2—C1—N11.5 (4)C7—C8—C9—N30.1 (6)
C10—N2—C1—N1177.5 (3)C1—N2—C10—C1181.5 (4)
C1—N1—C2—C30.5 (5)C3—N2—C10—C1193.8 (4)
C4—N1—C2—C3176.6 (4)C15—N4—C11—C120.8 (6)
N1—C2—C3—N21.4 (5)C15—N4—C11—C10176.2 (3)
C1—N2—C3—C21.8 (5)N2—C10—C11—N431.7 (5)
C10—N2—C3—C2177.7 (3)N2—C10—C11—C12151.1 (4)
C1—N1—C4—C5119.3 (4)N4—C11—C12—C131.0 (6)
C2—N1—C4—C557.3 (5)C10—C11—C12—C13175.9 (4)
C9—N3—C5—C60.8 (5)C11—C12—C13—C140.3 (7)
Zn1—N3—C5—C6174.7 (3)C12—C13—C14—C151.8 (7)
C9—N3—C5—C4178.7 (3)C11—N4—C15—C140.8 (6)
Zn1—N3—C5—C47.3 (4)C13—C14—C15—N42.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2i0.932.833.608 (4)142
C4—H4A···Cl3i0.972.833.638 (3)142
C4—H4B···Cl20.972.743.588 (4)146
C9—H9···Cl30.932.783.442 (4)129
C10—H10B···Cl20.972.803.573 (4)137
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C15H15N4)Cl3]
Mr423.03
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.3222 (12), 13.3871 (18), 15.977 (2)
V3)1780.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.22 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.650, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
10139, 3615, 2630
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.062, 0.99
No. of reflections3615
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25
Absolute structureFlack (1983); 1529 Friedel pairs
Absolute structure parameter0.015 (13)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXTL (Bruker, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—N32.099 (3)Zn1—Cl12.2424 (11)
Zn1—Cl22.2393 (11)Zn1—Cl32.2548 (11)
N3—Zn1—Cl2107.64 (8)N3—Zn1—Cl3105.14 (8)
N3—Zn1—Cl1104.47 (8)Cl2—Zn1—Cl3113.48 (4)
Cl2—Zn1—Cl1114.22 (4)Cl1—Zn1—Cl3111.00 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2i0.932.833.608 (4)142
C4—H4A···Cl3i0.972.833.638 (3)142
C4—H4B···Cl20.972.743.588 (4)146
C9—H9···Cl30.932.783.442 (4)129
C10—H10B···Cl20.972.803.573 (4)137
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds