Download citation
Download citation
link to html
The dinuclear title complex, [Ag2(NO3)2(3-PyOH)4]·2H2O (3-PyOH is 3-hydroxy­pyridine, C5H5NO), situated across a crystallographic inversion centre, can be described as a dimeric structure, in which two [Ag(3-PyOH)2] groups are held together by the Ag...Ag inter­action [3.317 (1) Å]. Each Ag atom is two-coordinate and exists in an approximately linear geometry. The two NO3 ions inter­act with the AgI atoms in a bridging mode through very weak Ag...O inter­actions [Ag...O = 2.862 (2) and 2.877 (2) Å]. A three-dimensional supramolecular framework is formed by O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030710/ci6654sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030710/ci6654IIsup2.hkl
Contains datablock II

CCDC reference: 287529

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.027
  • wR factor = 0.068
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N3 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

3-Hydroxypyridine (3-PyOH), when deprotonated, is a good building block in directing polymeric coordination architectures with interesting properties, such as magnetism (Castillo et al., 2000; Kawata et al., 1997) and fluorescence (Gao et al., 2005); in its neutral form, it is also useful in the synthesis of supramolecules and inorganic precursor compounds for solid-state materials, since it is not only capable of binding to metal centers but can also form regular hydrogen bonds by functioning as both a hydrogen-bond donor and an acceptor (Breeze & Wang, 1993). Recently, we have reported the chain and layer hydrogen-bonding architectures of two copper(II) complexes (Gao, Zhang et al., 2004; Gao, Lu et al., 2004), as well as the three-dimensional supramolecular framework structure of [Ag(3-PyOH)2]NO3, (I) (Lu et al., 2005). In continuation of our research in synthesis of supramolecular transition metal complexes with the 3-PyOH ligand, we have recently obtained the title compound, (II), from an aqueous solution of AgNO3 and 3-PyOH. We report here the crystal structure of (II).

The asymmetric unit of (II) consists of one-half of [Ag(3-PyOH)2NO3]2·2H2O, situated across a crystallographic inversion centre (Fig. 1). Each AgI atom is coordinated by two neutral 3-PyOH molecules through the N atoms [Ag—N = 2.142 (2) and 2.148 (2) Å] and shows a linear geometry with an N—Ag—N angle of 171.79 (8)°. The two NO3 ions interact with the AgI atoms in a bridging mode through very weak Ag···O interactions [Ag···O = 2.862 (2) and 2.877 (2) Å]. The fact that the N—Ag—N angle in (II) is wider than that in (I) [162.54 (9)°; Lu et al., 2005] may be ascribed to the bridging mode of the two NO3 ions, rather than the chelating coordination of just one NO3 ions in (I). The Ag···O distances in (II) (Table 1) are longer than those in (I) [2.760 (3) and 2.801 (3) Å; Lu et al., 2005]. The Ag···Ag distance of 3.317 (1) Å is within the sum of van der Waals radii for two AgI centers (3.44 Å; Bondi, 1964) and can be considered as an Ag···Ag interaction.

In the dinuclear unit, ππ interactions are observed between adjacent pyridine rings, with a centroid–centroid distance of 3.579 (2) Å. The dinuclear units are linked by O—H···O hydrogen bonds involving the water molecules, the hydroxy groups in the 3-PyOH ligands and the NO3 ions, into a three-dimensional hydrogen-bonded framework (Fig. 2 and Table 2).

Experimental top

The title complex, (II), was prepared by the addition of AgNO3 (2 mmol) to an aqueous solution of 3-hydroxypyridine (6 mmol). The resulting solution was protected from light and allowed to evaporate slowly at room temperature, whereupon colourless prismatic crystals of (I) were isolated after 5 d. Analysis calculated for C10H12N3O6Ag: C 31.77, H 3.20, N 11.11%; found: C 31.71, H 3.21, N 11.12%.

Refinement top

H atoms attached to O atoms were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and were allowed to ride on their parent C atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC & Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII plot of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by (1 − x, 1 − y, 1 − z). Bold-dashed lines represent weak Ag···O contacts.
[Figure 2] Fig. 2. Perspective view of the hydrogen-bonded three-dimensional network of (II). Weak Ag···O contacts and hydrogen bonds are denoted by bold- and narrow-dashed lines, respectively. The H atoms of the aromatic rings have been omitted for clarity.
Di-µ-nitrato-κ4O:O'-bis[bis(3-hydroxypyridine-κN)silver(I)] dihydrate top
Crystal data top
[Ag2(NO3)2(C5H5NO)4]·2H2OZ = 1
Mr = 756.19F(000) = 376
Triclinic, P1Dx = 1.892 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9912 (16) ÅCell parameters from 5742 reflections
b = 8.8615 (18) Åθ = 3.1–27.5°
c = 10.399 (2) ŵ = 1.55 mm1
α = 81.37 (3)°T = 296 K
β = 71.64 (3)°Prism, colourless
γ = 72.01 (3)°0.36 × 0.27 × 0.19 mm
V = 663.6 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3011 independent reflections
Radiation source: fine-focus sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.610, Tmax = 0.747l = 1313
6582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.0053P]
where P = (Fo2 + 2Fc2)/3
3011 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.58 e Å3
5 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ag2(NO3)2(C5H5NO)4]·2H2Oγ = 72.01 (3)°
Mr = 756.19V = 663.6 (3) Å3
Triclinic, P1Z = 1
a = 7.9912 (16) ÅMo Kα radiation
b = 8.8615 (18) ŵ = 1.55 mm1
c = 10.399 (2) ÅT = 296 K
α = 81.37 (3)°0.36 × 0.27 × 0.19 mm
β = 71.64 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3011 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2533 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.747Rint = 0.017
6582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0275 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.58 e Å3
3011 reflectionsΔρmin = 0.32 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.69864 (3)0.54425 (2)0.43994 (2)0.05103 (9)
O1W1.0194 (3)0.1979 (4)1.0753 (2)0.0828 (7)
O10.2890 (3)1.0702 (2)0.2297 (2)0.0539 (4)
O20.9111 (4)0.4190 (3)0.8937 (2)0.0742 (6)
O30.3204 (3)0.7474 (3)0.6333 (2)0.0724 (6)
O40.5717 (3)0.7994 (2)0.6194 (2)0.0622 (5)
O50.3432 (3)0.8461 (3)0.7989 (2)0.0782 (7)
N10.5825 (3)0.6775 (2)0.2838 (2)0.0432 (4)
N20.8483 (3)0.3954 (2)0.5733 (2)0.0437 (4)
N30.4115 (3)0.7960 (2)0.6849 (2)0.0461 (5)
C10.4793 (3)0.8278 (3)0.3024 (2)0.0421 (5)
C20.3940 (3)0.9176 (3)0.2084 (2)0.0413 (5)
C30.4130 (4)0.8499 (3)0.0924 (3)0.0491 (6)
C40.5220 (4)0.6965 (3)0.0719 (3)0.0554 (7)
C50.6049 (4)0.6133 (3)0.1693 (3)0.0492 (6)
C60.8391 (3)0.4458 (3)0.6892 (3)0.0469 (6)
C70.9323 (3)0.3531 (3)0.7791 (3)0.0481 (6)
C81.0403 (3)0.2026 (3)0.7449 (3)0.0509 (6)
C91.0504 (4)0.1516 (3)0.6240 (3)0.0541 (6)
C100.9538 (4)0.2490 (3)0.5393 (3)0.0510 (6)
H10.46450.87350.38160.050*
H30.35350.90670.02900.059*
H40.53960.64900.00710.066*
H50.67840.50960.15470.059*
H60.76690.54810.71180.056*
H81.10490.13710.80230.061*
H91.12310.05030.59880.065*
H100.96220.21250.45760.061*
H110.335 (5)1.110 (4)0.274 (3)0.081*
H120.961 (5)0.346 (4)0.943 (4)0.111*
H1W11.087 (4)0.194 (6)1.125 (3)0.124*
H1W20.916 (3)0.189 (6)1.125 (3)0.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05349 (13)0.04793 (12)0.05306 (13)0.00751 (9)0.02662 (9)0.00361 (8)
O1W0.0701 (15)0.1093 (19)0.0705 (15)0.0225 (15)0.0371 (12)0.0221 (14)
O10.0555 (11)0.0466 (9)0.0615 (12)0.0033 (8)0.0301 (9)0.0029 (8)
O20.0901 (16)0.0682 (13)0.0550 (12)0.0067 (12)0.0325 (11)0.0116 (10)
O30.0952 (17)0.0712 (13)0.0732 (14)0.0329 (12)0.0438 (13)0.0074 (11)
O40.0598 (12)0.0608 (12)0.0601 (12)0.0073 (10)0.0111 (10)0.0191 (10)
O50.0730 (15)0.1116 (19)0.0545 (12)0.0273 (14)0.0105 (11)0.0320 (13)
N10.0453 (11)0.0423 (10)0.0427 (10)0.0089 (8)0.0170 (9)0.0019 (8)
N20.0410 (10)0.0394 (10)0.0509 (12)0.0090 (8)0.0175 (9)0.0018 (9)
N30.0626 (14)0.0329 (9)0.0456 (11)0.0036 (9)0.0274 (10)0.0051 (8)
C10.0462 (13)0.0456 (12)0.0361 (11)0.0115 (10)0.0141 (10)0.0050 (10)
C20.0378 (12)0.0453 (12)0.0421 (12)0.0121 (10)0.0140 (10)0.0006 (10)
C30.0569 (15)0.0583 (15)0.0408 (13)0.0231 (12)0.0224 (11)0.0043 (11)
C40.0732 (19)0.0588 (15)0.0389 (13)0.0241 (14)0.0135 (13)0.0102 (12)
C50.0542 (15)0.0479 (13)0.0432 (13)0.0111 (11)0.0111 (11)0.0084 (11)
C60.0434 (13)0.0399 (12)0.0511 (14)0.0031 (10)0.0144 (11)0.0002 (11)
C70.0448 (13)0.0503 (13)0.0444 (13)0.0081 (11)0.0117 (11)0.0013 (11)
C80.0426 (13)0.0467 (13)0.0596 (16)0.0055 (11)0.0201 (12)0.0053 (12)
C90.0452 (14)0.0417 (12)0.0712 (18)0.0005 (11)0.0209 (13)0.0060 (12)
C100.0482 (14)0.0458 (13)0.0588 (15)0.0076 (11)0.0195 (12)0.0055 (12)
Geometric parameters (Å, º) top
Ag1—N12.142 (2)N2—C101.339 (3)
Ag1—N22.148 (2)C1—C21.379 (3)
Ag1—O3i2.862 (2)C1—H10.93
Ag1—O42.877 (2)C2—C31.373 (4)
Ag1—Ag1i3.317 (1)C3—C41.375 (4)
O1W—H1W10.85 (4)C3—H30.93
O1W—H1W20.85 (3)C4—C51.380 (4)
O1—C21.362 (3)C4—H40.93
O1—H110.84 (4)C5—H50.93
O2—C71.346 (4)C6—C71.390 (4)
O2—H120.84 (4)C6—H60.93
O3—N31.230 (3)C7—C81.374 (4)
O4—N31.253 (3)C8—C91.369 (4)
O5—N31.226 (3)C8—H80.93
N1—C51.334 (3)C9—C101.380 (4)
N1—C11.338 (3)C9—H90.93
N2—C61.321 (3)C10—H100.93
O4—Ag1—N196.37 (7)C2—O1—H11107 (2)
O4—Ag1—N290.05 (8)C2—C1—H1118.8
N1—Ag1—N2171.79 (8)C2—C3—C4118.6 (2)
N1—Ag1—O3i91.78 (2)C2—C3—H3120.7
N2—Ag1—O3i84.98 (2)C3—C2—C1119.0 (2)
O4—Ag1—O3i151.50 (2)C3—C4—C5119.6 (2)
N1—Ag1—Ag1i84.09 (6)C3—C4—H4120.2
N2—Ag1—Ag1i100.95 (6)C4—C3—H3120.7
O4—Ag1—Ag1i91.48 (2)C4—C5—H5119.1
O3i—Ag1—Ag1i62.10 (2)C5—C4—H4120.2
O1—C2—C3119.6 (2)C5—N1—C1118.5 (2)
O1—C2—C1121.5 (2)C5—N1—Ag1121.9 (2)
O2—C7—C8124.6 (2)C6—N2—C10118.8 (2)
O2—C7—C6117.0 (2)C6—N2—Ag1121.1 (2)
O3—N3—O4120.2 (2)C7—O2—H12106 (3)
O5—N3—O3119.8 (2)C7—C6—H6118.5
O5—N3—O4120.0 (2)C7—C8—H8120.9
N1—C1—C2122.5 (2)C8—C9—C10120.7 (3)
N1—C1—H1118.8C8—C9—H9119.7
N1—C5—C4121.9 (2)C8—C7—C6118.4 (3)
N1—C5—H5119.1C9—C8—C7118.2 (2)
N2—C6—C7123.0 (2)C9—C10—H10119.6
N2—C6—H6118.5C9—C8—H8120.9
N2—C10—C9120.9 (3)C10—C9—H9119.7
N2—C10—H10119.6C10—N2—Ag1120.13 (18)
C1—N1—Ag1119.6 (2)H1W1—O1W—H1W2109 (3)
Ag1i—Ag1—N1—C590.6 (2)O1—C2—C3—C4179.1 (2)
Ag1i—Ag1—N1—C187.1 (2)O2—C7—C8—C9179.4 (3)
Ag1i—Ag1—N2—C688.4 (2)C1—C2—C3—C42.3 (4)
Ag1i—Ag1—N2—C1091.9 (2)C1—N1—C5—C41.3 (4)
Ag1—N1—C5—C4176.5 (2)C2—C3—C4—C51.8 (4)
Ag1—N1—C1—C2177.1 (2)C3—C4—C5—N10.1 (4)
Ag1—N2—C6—C7179.4 (2)C5—N1—C1—C20.8 (4)
Ag1—N2—C10—C9179.8 (2)C6—C7—C8—C90.1 (4)
N1—C1—C2—O1179.7 (2)C6—N2—C10—C90.5 (4)
N1—C1—C2—C31.1 (4)C7—C8—C9—C100.2 (4)
N2—C6—C7—O2180.0 (2)C8—C9—C10—N20.0 (4)
N2—C6—C7—C80.6 (4)C10—N2—C6—C70.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4ii0.84 (4)1.89 (4)2.735 (3)177 (3)
O1—H11···O5ii0.84 (4)2.58 (3)3.163 (3)128 (3)
O2—H12···O1W0.84 (4)1.82 (4)2.650 (3)168 (4)
O1W—H1W1···O1iii0.85 (4)2.16 (2)2.937 (3)153 (4)
O1W—H1W2···O5iv0.85 (3)2.08 (3)2.901 (3)166 (4)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y1, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ag2(NO3)2(C5H5NO)4]·2H2O
Mr756.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9912 (16), 8.8615 (18), 10.399 (2)
α, β, γ (°)81.37 (3), 71.64 (3), 72.01 (3)
V3)663.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.36 × 0.27 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.610, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
6582, 3011, 2533
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.04
No. of reflections3011
No. of parameters193
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.32

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC & Rigaku Corporation, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ag1—N12.142 (2)Ag1—O42.877 (2)
Ag1—N22.148 (2)Ag1—Ag1i3.317 (1)
Ag1—O3i2.862 (2)
O4—Ag1—N196.37 (7)N1—Ag1—O3i91.78 (2)
O4—Ag1—N290.05 (8)N2—Ag1—O3i84.98 (2)
N1—Ag1—N2171.79 (8)O4—Ag1—O3i151.50 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4ii0.84 (4)1.89 (4)2.735 (3)177 (3)
O1—H11···O5ii0.84 (4)2.58 (3)3.163 (3)128 (3)
O2—H12···O1W0.84 (4)1.82 (4)2.650 (3)168 (4)
O1W—H1W1···O1iii0.85 (4)2.16 (2)2.937 (3)153 (4)
O1W—H1W2···O5iv0.85 (3)2.08 (3)2.901 (3)166 (4)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y1, z+1; (iv) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds