Download citation
Download citation
link to html
The title compound, C12H13NO5, was synthesized by the condensation of methyl anthranilate and succinic anhydride. The dihedral angle between the phenyl­acetamide and carboxylic acid (–C—COOH) planes is 80.47 (5)°. In the crystal structure, inversion-related mol­ecules form an O—H...O hydrogen-bonded dimer. Adjacent dimers are inter­linked by C—H...O hydrogen bonds to form a chain along [110].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029703/ci6655sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029703/ci6655Isup2.hkl
Contains datablock I

CCDC reference: 287530

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.113
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Methyl(2-methoxycarbonyl)succinate, a natural aromatic amide isolated from the methanolic extract of Jolyna laminarioides, has shown potent chymotrypsin inhibitory activity (Atta-ur-Rahman et al., 1997). Therefore, we have synthesized our desired analogue, (I), in 85% yield, by a one-step condensation of methyl anthraanilate and succinic anhydride (see scheme). We report here the structure of (I).

Molecules of the title compound, (I), have normal bond lengths (Allen et al., 1987). The C6—N1—C7 bond angle [130.13 (11)°] is larger compared with the value of 126.69 (10)° observed in N,N'-diphenylsuccinimide (Anjum et al., 2005). The N1—C7 and C8—C9 bonds are trans with respect to the C7—C8 bond for steric reasons, the N1—C7—C8—C9 torsion angle being 175.77 (11)°.

The phenylacetamide moiety is planar to within ±0.018 (1) Å. The C9—C10—O4—O5 and C11—C12—O1—O2 planes form dihedral angles of 80.47 (5) and 9.38 (9)°, respectively, with the phenylacetamide moiety. This orientation is influenced by intramolecular C—H···O and N—H···O interactions, namely N1—H1N···O2, C5—H5···O3 and C2—H2···O1 (Table 1). As seen in Fig. 1, each of these interactions generates rings of graph-set motif S(5) or S(6) (Bernstein et al., 1995).

In the crystal structure, centrosymmetrically related molecules are linked by O5—H1O5···O4i intermolecular hydrogen bonds to form a dimeric pair (symmetry code as in Table 1). These hydrogen bonds form an R22(8) ring motif. The adjacent dimers are interlinked by mutual C9—H9B···O2ii hydrogen bonds to form a chain along [110]. These hydrogen bonds form an R22(18) ring motif (Fig. 2). A C—H···π interaction involving atom H8B and the C1–C6 ring is observed, with atom H8B separated from the centroid (Cg1) of the ring by 2.58 Å (Table 1).

Experimental top

Succinic anhydride (1.0 g, 0.01 mol) was added to methyl anthraanilate (0.5 g, 0.003 mol) in a round-bottomed flask containing dry toluene (50 ml). The reaction mixture was then refluxed for 15 h using a Dean–Stark trap. The reaction mixture was quickly filtered and left for crystallization at room temperature, to obtain colourless crystals of compound (I) (1.01 g, yield 85%, m.p. 539–540 K).

Refinement top

Atom H1O5 was located in a difference Fourier map and refined isotropically. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,N). A rotating-group model was used for the methyl group.

Computing details top

Data collection: SMART (Siemens, 1997); cell refinement: SAINT (Siemens, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing R22(8) and R22(18) ring motifs. Dashed lines indicate hydrogen bonds.
2-Methoxycarbonyl succinanilic acid top
Crystal data top
C12H13NO5F(000) = 1056
Mr = 251.23Dx = 1.376 Mg m3
Monoclinic, C2/cMelting point: 397-399K K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.301 (2) ÅCell parameters from 5412 reflections
b = 12.1788 (15) Åθ = 2.0–26.5°
c = 10.8967 (14) ŵ = 0.11 mm1
β = 93.001 (2)°T = 293 K
V = 2425.3 (5) Å3Block, colourless
Z = 80.42 × 0.27 × 0.24 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2498 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.33 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1514
Tmin = 0.956, Tmax = 0.975l = 1213
6736 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0551P)2 + 1.0027P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2498 reflectionsΔρmax = 0.20 e Å3
169 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (10)
Crystal data top
C12H13NO5V = 2425.3 (5) Å3
Mr = 251.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.301 (2) ŵ = 0.11 mm1
b = 12.1788 (15) ÅT = 293 K
c = 10.8967 (14) Å0.42 × 0.27 × 0.24 mm
β = 93.001 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2230 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.975Rint = 0.019
6736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2498 reflectionsΔρmin = 0.17 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07221 (6)0.13681 (9)0.38233 (10)0.0698 (3)
O20.13261 (8)0.17696 (9)0.21797 (12)0.0851 (4)
O30.26540 (7)0.09981 (9)0.00945 (12)0.0803 (4)
O40.42082 (5)0.04780 (10)0.03564 (9)0.0647 (3)
O50.44972 (6)0.00629 (11)0.14972 (10)0.0679 (3)
N10.20032 (7)0.01423 (9)0.10851 (10)0.0514 (3)
H1N0.19250.08300.12030.062*
C10.11698 (7)0.01165 (11)0.27169 (13)0.0498 (3)
C20.08014 (8)0.08239 (14)0.34819 (15)0.0613 (4)
H20.05050.05320.40680.074*
C30.08703 (9)0.19425 (14)0.33833 (17)0.0681 (4)
H30.06210.24040.38970.082*
C40.13086 (9)0.23748 (13)0.25248 (16)0.0649 (4)
H40.13520.31330.24610.078*
C50.16877 (9)0.17094 (12)0.17519 (13)0.0569 (4)
H50.19860.20190.11790.068*
C60.16216 (7)0.05669 (11)0.18342 (12)0.0474 (3)
C70.24768 (7)0.00845 (11)0.02023 (12)0.0478 (3)
C80.27596 (7)0.09339 (11)0.04048 (12)0.0473 (3)
H8A0.29720.14210.02220.057*
H8B0.23530.13150.08230.057*
C90.33291 (7)0.06764 (12)0.13204 (12)0.0507 (3)
H9A0.31500.00860.18530.061*
H9B0.33980.13180.18290.061*
C100.40495 (7)0.03491 (10)0.07268 (12)0.0451 (3)
C110.10887 (8)0.10874 (12)0.28557 (13)0.0558 (4)
C120.06633 (12)0.25315 (15)0.40603 (17)0.0822 (6)
H12A0.04220.26430.48120.123*
H12B0.03850.28750.33950.123*
H12C0.11440.28490.41310.123*
H1O50.4900 (13)0.0210 (17)0.107 (2)0.094 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0760 (7)0.0660 (7)0.0697 (7)0.0113 (5)0.0266 (6)0.0017 (5)
O20.1269 (11)0.0472 (6)0.0861 (8)0.0148 (6)0.0528 (8)0.0094 (6)
O30.0983 (9)0.0442 (6)0.1023 (9)0.0075 (6)0.0432 (7)0.0041 (6)
O40.0512 (6)0.0870 (8)0.0558 (6)0.0166 (5)0.0005 (4)0.0161 (5)
O50.0473 (6)0.0996 (9)0.0575 (6)0.0100 (5)0.0081 (5)0.0179 (6)
N10.0626 (7)0.0394 (6)0.0530 (6)0.0041 (5)0.0121 (5)0.0015 (5)
C10.0458 (7)0.0500 (7)0.0533 (7)0.0001 (5)0.0012 (6)0.0062 (6)
C20.0496 (8)0.0666 (9)0.0681 (9)0.0035 (7)0.0081 (7)0.0119 (7)
C30.0617 (9)0.0616 (9)0.0809 (11)0.0166 (7)0.0034 (8)0.0177 (8)
C40.0759 (10)0.0441 (7)0.0732 (10)0.0145 (7)0.0100 (8)0.0049 (7)
C50.0687 (9)0.0451 (7)0.0562 (8)0.0036 (6)0.0037 (6)0.0024 (6)
C60.0495 (7)0.0447 (7)0.0474 (7)0.0024 (5)0.0033 (5)0.0030 (5)
C70.0473 (7)0.0442 (7)0.0517 (7)0.0051 (5)0.0012 (5)0.0013 (5)
C80.0438 (6)0.0445 (7)0.0536 (7)0.0058 (5)0.0012 (5)0.0013 (5)
C90.0517 (7)0.0510 (7)0.0495 (7)0.0034 (6)0.0042 (6)0.0039 (6)
C100.0445 (7)0.0403 (6)0.0512 (7)0.0029 (5)0.0085 (5)0.0036 (5)
C110.0558 (8)0.0563 (8)0.0561 (8)0.0087 (6)0.0106 (6)0.0052 (6)
C120.1029 (14)0.0695 (11)0.0762 (11)0.0241 (10)0.0242 (10)0.0058 (9)
Geometric parameters (Å, º) top
O1—C111.3240 (18)C3—H30.93
O1—C121.445 (2)C4—C51.381 (2)
O2—C111.2063 (18)C4—H40.93
O3—C71.2078 (17)C5—C61.3999 (19)
O4—C101.2110 (16)C5—H50.93
O5—C101.3037 (16)C7—C81.5099 (19)
O5—H1O50.87 (2)C8—C91.5129 (18)
N1—C71.3566 (17)C8—H8A0.97
N1—C61.3999 (17)C8—H8B0.97
N1—H1N0.86C9—C101.4921 (19)
C1—C21.397 (2)C9—H9A0.97
C1—C61.4117 (19)C9—H9B0.97
C1—C111.482 (2)C12—H12A0.96
C2—C31.373 (2)C12—H12B0.96
C2—H20.93C12—H12C0.96
C3—C41.369 (2)
C11—O1—C12116.17 (13)N1—C7—C8112.94 (11)
C10—O5—H1O5105.8 (14)C7—C8—C9112.48 (11)
C7—N1—C6130.13 (11)C7—C8—H8A109.1
C7—N1—H1N114.9C9—C8—H8A109.1
C6—N1—H1N114.9C7—C8—H8B109.1
C2—C1—C6119.03 (14)C9—C8—H8B109.1
C2—C1—C11119.69 (13)H8A—C8—H8B107.8
C6—C1—C11121.28 (12)C10—C9—C8113.15 (11)
C3—C2—C1121.08 (15)C10—C9—H9A108.9
C3—C2—H2119.5C8—C9—H9A108.9
C1—C2—H2119.5C10—C9—H9B108.9
C4—C3—C2119.64 (15)C8—C9—H9B108.9
C4—C3—H3120.2H9A—C9—H9B107.8
C2—C3—H3120.2O4—C10—O5123.42 (13)
C3—C4—C5121.45 (15)O4—C10—C9123.32 (12)
C3—C4—H4119.3O5—C10—C9113.24 (12)
C5—C4—H4119.3O2—C11—O1121.47 (14)
C4—C5—C6119.75 (15)O2—C11—C1125.30 (13)
C4—C5—H5120.1O1—C11—C1113.23 (12)
C6—C5—H5120.1O1—C12—H12A109.5
C5—C6—N1121.91 (13)O1—C12—H12B109.5
C5—C6—C1119.04 (13)H12A—C12—H12B109.5
N1—C6—C1119.04 (12)O1—C12—H12C109.5
O3—C7—N1124.61 (13)H12A—C12—H12C109.5
O3—C7—C8122.44 (12)H12B—C12—H12C109.5
C6—C1—C2—C30.3 (2)C6—N1—C7—O30.1 (2)
C11—C1—C2—C3179.44 (14)C6—N1—C7—C8179.10 (13)
C1—C2—C3—C40.2 (2)O3—C7—C8—C95.2 (2)
C2—C3—C4—C50.2 (2)N1—C7—C8—C9175.77 (11)
C3—C4—C5—C60.5 (2)C7—C8—C9—C1073.29 (15)
C4—C5—C6—N1178.98 (13)C8—C9—C10—O413.44 (19)
C4—C5—C6—C10.4 (2)C8—C9—C10—O5168.23 (12)
C7—N1—C6—C50.2 (2)C12—O1—C11—O23.6 (2)
C7—N1—C6—C1178.34 (13)C12—O1—C11—C1176.13 (14)
C2—C1—C6—C50.0 (2)C2—C1—C11—O2172.99 (17)
C11—C1—C6—C5179.10 (13)C6—C1—C11—O27.9 (2)
C2—C1—C6—N1178.64 (13)C2—C1—C11—O17.3 (2)
C11—C1—C6—N10.50 (19)C6—C1—C11—O1171.88 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861.942.6534 (17)139
O5—H1O5···O4i0.87 (2)1.80 (2)2.6657 (15)173 (2)
C2—H2···O10.932.362.700 (2)101
C5—H5···O30.932.272.881 (2)123
C9—H9B···O2ii0.972.423.3184 (19)154
C8—H8B···Cg1iii0.972.583.4470 (15)149
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13NO5
Mr251.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.301 (2), 12.1788 (15), 10.8967 (14)
β (°) 93.001 (2)
V3)2425.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.27 × 0.24
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6736, 2498, 2230
Rint0.019
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.04
No. of reflections2498
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Siemens, 1997), SAINT (Siemens, 1997), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861.942.6534 (17)139
O5—H1O5···O4i0.87 (2)1.80 (2)2.6657 (15)173 (2)
C2—H2···O10.932.362.700 (2)101
C5—H5···O30.932.272.881 (2)123
C9—H9B···O2ii0.972.423.3184 (19)154
C8—H8B···Cg1iii0.972.583.4470 (15)149
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds