Download citation
Download citation
link to html
The title compound, C16H16N2O4, was synthesized by the reaction of 3-hydr­oxy-4-methoxy­benzaldehyde with hydrazine hydrate. The mol­ecule possesses a crystallographically imposed centre of symmetry. An intra­molecular O—H...O hydrogen bond promotes planarity of the mol­ecular backbone. In the crystal structure, inter­molecular O—H...N and C—H...O hydrogen bonds stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030205/cv6575sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030205/cv6575Isup2.hkl
Contains datablock I

CCDC reference: 287541

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.103
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C16 H16 N2 O4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Recently, a number of azine compounds containing both a diimine linkage and N—N bonding have been investigated in terms of their crystallography and coordination chemistry (Zheng et al., 2005; Kundu et al., 2005; Kesslen & Euler, 1999; Armstrong et al., 1998; Xu et al., 1997). We report here the crystal structure of the title compound, (I), where two 3-hydroxy-4-methoxybenzylidene units are directly linked through the imine N atoms.

The molecule of (I) possesses a crystallographically imposed centre of symmetry at the mid-point of the N—N bond (Fig. 1). The N—N bond length of 1.412 (2) Å (Table 1) is somewhat longer than that observed in related azine compounds (Xu et al., 2005; Liu et al., 2004; Şengül et al., 2004). The CN—N angle [112.82 (15)°] is similar to that in N,N'-bis(4-chlorobenzylidene)hydrazine (Zheng et al., 2005) but significantly smaller than the ideal sp2 value of 120°, as a consequence of repulsion between the nitrogen lone pairs and the adjacent CN bond. An intramolecular O—H···O hydrogen bond (Table 2) provides planarity of the molecular backbone, with an r.m.s deviation of 0.034 (6) Å.

In the crystal structure, intermolecular O—H···N and C—H···O hydrogen bonds (Table 2) stabilize the crystal packing (Fig. 2).

Experimental top

The title compound was synthesized by the reaction of 3-hydroxy-4-methoxybenzaldehyde with hydrazine hydrate in refluxing ethanol (Liu et al., 2004). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a tetrahydrofuran solution.

Refinement top

All H atoms were located in a difference Fourier map. C-bound H atoms were refined as riding, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C). Atom H1 was refined isotropically, with O1—H1 = 0.85 (1) Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the intramolecular hydrogen bonds (dashed lines) and with displacement ellipsoids at the 30% probability level. The suffix A corresponds to symmetry operation (−1 − x, 1 − y, 1 − z).
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately down the a axis, showing the intermolecular hydrogen-bonded (dashed lines) extended network.
N,N'-Bis(3-hydroxy-4-methoxybenzylidene)hydrazine top
Crystal data top
C16H16N2O4F(000) = 316
Mr = 300.31Dx = 1.339 Mg m3
Monoclinic, P21/cMelting point = 538–539 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.6858 (12) ÅCell parameters from 1595 reflections
b = 10.018 (2) Åθ = 2.6–26.1°
c = 13.902 (3) ŵ = 0.10 mm1
β = 109.841 (4)°T = 294 K
V = 744.8 (3) Å3Block, light yellow
Z = 20.30 × 0.22 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1523 independent reflections
Radiation source: fine-focus sealed tube1065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 57
Tmin = 0.946, Tmax = 0.980k = 1210
4096 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
1523 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H16N2O4V = 744.8 (3) Å3
Mr = 300.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.6858 (12) ŵ = 0.10 mm1
b = 10.018 (2) ÅT = 294 K
c = 13.902 (3) Å0.30 × 0.22 × 0.16 mm
β = 109.841 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1523 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1065 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.980Rint = 0.026
4096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
1523 reflectionsΔρmin = 0.18 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0710 (2)0.88695 (12)0.79780 (7)0.0602 (4)
H10.186 (3)0.9442 (17)0.8247 (14)0.088 (7)*
O20.3775 (2)1.00468 (12)0.71810 (8)0.0647 (4)
N10.4169 (2)0.54375 (11)0.53530 (8)0.0468 (3)
C10.2847 (3)0.61183 (14)0.49583 (10)0.0455 (4)
H1A0.30160.59700.42780.059 (5)*
C20.1074 (3)0.71255 (13)0.55342 (10)0.0407 (4)
C30.1002 (3)0.75316 (13)0.65066 (10)0.0403 (4)
H30.20810.71470.68020.046 (4)*
C40.0659 (3)0.84964 (14)0.70261 (10)0.0395 (3)
C50.2262 (3)0.90923 (14)0.65841 (11)0.0438 (4)
C60.2204 (3)0.86946 (17)0.56329 (12)0.0570 (5)
H60.32820.90830.53380.069 (5)*
C70.0538 (3)0.77149 (16)0.51091 (12)0.0549 (4)
H70.05070.74510.44640.071 (5)*
C80.5390 (4)1.0770 (2)0.67879 (16)0.0731 (6)
H8A0.65001.01620.66220.113 (9)*
H8B0.63491.13960.72920.113 (8)*
H8C0.44171.12430.61830.110 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0820 (9)0.0624 (8)0.0341 (6)0.0261 (6)0.0169 (6)0.0125 (5)
O20.0696 (8)0.0634 (7)0.0583 (7)0.0317 (6)0.0179 (6)0.0157 (6)
N10.0591 (8)0.0357 (7)0.0322 (6)0.0073 (6)0.0018 (6)0.0032 (5)
C10.0585 (10)0.0373 (8)0.0310 (7)0.0004 (7)0.0026 (6)0.0034 (6)
C20.0472 (8)0.0339 (7)0.0344 (7)0.0022 (6)0.0050 (6)0.0019 (6)
C30.0466 (9)0.0355 (7)0.0344 (7)0.0036 (6)0.0082 (6)0.0018 (6)
C40.0486 (8)0.0352 (7)0.0287 (7)0.0010 (6)0.0052 (6)0.0002 (6)
C50.0433 (8)0.0393 (8)0.0426 (8)0.0048 (6)0.0065 (6)0.0037 (6)
C60.0598 (11)0.0637 (11)0.0542 (10)0.0142 (8)0.0280 (8)0.0099 (8)
C70.0671 (11)0.0581 (10)0.0425 (9)0.0073 (8)0.0225 (8)0.0138 (7)
C80.0586 (11)0.0615 (12)0.0947 (16)0.0213 (10)0.0201 (12)0.0051 (11)
Geometric parameters (Å, º) top
O1—C41.3659 (17)C3—C41.3727 (19)
O1—H10.855 (10)C3—H30.9301
O2—C51.3631 (17)C4—C51.394 (2)
O2—C81.417 (2)C5—C61.371 (2)
N1—C11.269 (2)C6—C71.387 (2)
N1—N1i1.413 (2)C6—H60.9300
C1—C21.459 (2)C7—H70.9299
C1—H1A0.9300C8—H8A0.9600
C2—C71.381 (2)C8—H8B0.9600
C2—C31.3987 (19)C8—H8C0.9600
C4—O1—H1111.6 (14)O2—C5—C6126.49 (14)
C5—O2—C8118.80 (13)O2—C5—C4113.82 (12)
C1—N1—N1i112.82 (15)C6—C5—C4119.70 (13)
N1—C1—C2122.33 (13)C5—C6—C7120.05 (15)
N1—C1—H1A118.8C5—C6—H6120.0
C2—C1—H1A118.8C7—C6—H6120.0
C7—C2—C3118.89 (13)C2—C7—C6120.83 (14)
C7—C2—C1119.77 (13)C2—C7—H7119.6
C3—C2—C1121.32 (14)C6—C7—H7119.6
C4—C3—C2120.18 (14)O2—C8—H8A109.4
C4—C3—H3119.9O2—C8—H8B109.5
C2—C3—H3119.9H8A—C8—H8B109.5
O1—C4—C3119.14 (14)O2—C8—H8C109.5
O1—C4—C5120.51 (12)H8A—C8—H8C109.5
C3—C4—C5120.35 (13)H8B—C8—H8C109.5
N1i—N1—C1—C2177.44 (14)O1—C4—C5—O20.6 (2)
N1—C1—C2—C7171.79 (14)C3—C4—C5—O2178.98 (12)
N1—C1—C2—C39.5 (2)O1—C4—C5—C6179.27 (14)
C7—C2—C3—C40.3 (2)C3—C4—C5—C61.1 (2)
C1—C2—C3—C4178.99 (13)O2—C5—C6—C7179.35 (15)
C2—C3—C4—O1179.49 (13)C4—C5—C6—C70.7 (2)
C2—C3—C4—C50.9 (2)C3—C2—C7—C60.1 (2)
C8—O2—C5—C63.4 (2)C1—C2—C7—C6178.65 (14)
C8—O2—C5—C4176.71 (15)C5—C6—C7—C20.2 (3)
Symmetry code: (i) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)2.20 (2)2.6405 (17)112 (2)
O1—H1···N1ii0.86 (1)2.18 (2)2.9365 (16)147 (2)
C7—H7···O1iii0.932.493.391 (2)164
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)5.6858 (12), 10.018 (2), 13.902 (3)
β (°) 109.841 (4)
V3)744.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4096, 1523, 1065
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.03
No. of reflections1523
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C41.3659 (17)N1—C11.269 (2)
O2—C51.3631 (17)N1—N1i1.413 (2)
O2—C81.417 (2)
C5—O2—C8118.80 (13)N1—C1—C2122.33 (13)
C1—N1—N1i112.82 (15)O1—C4—C3119.14 (14)
N1i—N1—C1—C2177.44 (14)N1—C1—C2—C39.5 (2)
N1—C1—C2—C7171.79 (14)
Symmetry code: (i) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.855 (10)2.201 (18)2.6405 (17)111.7 (15)
O1—H1···N1ii0.855 (10)2.184 (18)2.9365 (16)146.7 (16)
C7—H7···O1iii0.932.493.391 (2)164
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds