Download citation
Download citation
link to html
Adjacent mol­ecules of the title compound, C20H11Br2NO2, are oriented either parallel or antiparallel; in the latter case, there are four inter­molecular π–π inter­actions between acridine rings. The acridine and benzene ring systems are inclined at an angle of 41.2 (2)° to each other. There is also a short inter­molecular Br...Br contact.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027145/er6021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027145/er6021Isup2.hkl
Contains datablock I

CCDC reference: 287554

Key indicators

  • Single-crystal X-ray study
  • T = 290 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.028
  • wR factor = 0.081
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT431_ALERT_2_C Short Inter HL..A Contact Br24 .. Br24 .. 3.54 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Phenyl acridine-9-carboxylates have become interesting chemiluminescent agents, since they can be oxidized by H2O2, persulfates, peroxides or other oxidants to electronically excited 9-acridinones (Dodeigne et al., 2000; Razawi & McCapra, 2000), which are known to be efficient light emitters (Boużyk et al., 2003). For this reason, these compounds are widely applied as chemiluminescent indicators, or fragments of chemiluminescent labels, in immunological, medical, environmental and biochemical analyses (Dodeigne et al., 2000). Continuing the search for new, analytically useful chemiluminogens, we synthesized dibromophenyl acridine-9-carboxylate in order to find out how the presence of the Br atoms affects the stability and chemiluminogenic properties of this group of compounds. This paper, together with our earlier publications on the crystallography of phenyl acridine-9-carboxylates (Meszko et al., 2002; Sikorski et al., 2005a,b), thus extends the prospects of finding further chemiluminogens with interesting practical applications.

Bond lengths and angles may be regarded as typical for acridine-based derivatives (Table 1).

The acridine and phenyl groups are planar, with average deviations of 0.012 (3) and 0.005 (3) Å, respectively. The least-squares planes (defined by all non-H atoms) of the acridine and phenyl groups are inclined at an angle of 41.2 (2)° to each other (Fig. 1).

The angle between the least-squares planes of the acridine group and the carboxyl group, defined by atoms C16, O16 and O17, is 51.0 (3)°. Adjacent molecules are oriented either parallel or antiparallel. In the latter case, there are four intermolecular ππ interactions involving the acridine rings (Fig. 2 and Table 2). In addition, there is a short intermolecular Br···Br contact [Br24···Br24(2 − x, −1 − y, 1 − z) = 3.54 (1) Å].

Experimental top

The title compound was synthesized by heating commercially available acridine-9-carboxylic acid with excess thionyl chloride. The product of this reaction, the acid chloride, was reacted with 2,6-dibromophenol (Sato, 1996). The synthesis was carried out in dichloromethane in the presence of triethylamine and catalytic amounts of 4-dimethylaminopyridine. [Please give quantities of reagents, reaction conditions etc.] The crude product was purified chromatographically (SiO2, n-hexane/ethyl acetate, 3:2 v/v). Yellow crystals suitable for X-ray analysis were grown from cyclohexane (m.p. 428–429 K).

Refinement top

All H atoms were placed geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the molecules of the title compound in the unit cell, viewed along the a axis. The ππ interactions are represented by dashed lines [symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 2 − x, −y, −z] and Br···Br contacts by dotted lines [symmetry code: (iii) 2 − x, −1 − y, 1 − z.]. H atoms have been omitted.
2,6-Dibromophenyl acridine-9-carboxylate top
Crystal data top
C20H11Br2NO2Z = 2
Mr = 457.12F(000) = 448
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.385 (2) ÅCell parameters from 50 reflections
b = 9.840 (2) Åθ = 2.5–25.0°
c = 11.246 (2) ŵ = 4.85 mm1
α = 66.22 (3)°T = 290 K
β = 77.23 (3)°Prism, yellow
γ = 61.85 (3)°0.5 × 0.4 × 0.3 mm
V = 837.4 (4) Å3
Data collection top
Kuma KM-4
diffractometer
1803 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 1011
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.112, Tmax = 0.233l = 013
3074 measured reflections3 standard reflections every 200 reflections
2909 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
2909 reflectionsΔρmax = 0.36 e Å3
227 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (11)
Crystal data top
C20H11Br2NO2γ = 61.85 (3)°
Mr = 457.12V = 837.4 (4) Å3
Triclinic, P1Z = 2
a = 9.385 (2) ÅMo Kα radiation
b = 9.840 (2) ŵ = 4.85 mm1
c = 11.246 (2) ÅT = 290 K
α = 66.22 (3)°0.5 × 0.4 × 0.3 mm
β = 77.23 (3)°
Data collection top
Kuma KM-4
diffractometer
1803 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.112, Tmax = 0.2333 standard reflections every 200 reflections
3074 measured reflections intensity decay: 0.4%
2909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.85Δρmax = 0.36 e Å3
2909 reflectionsΔρmin = 0.33 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8165 (4)0.3693 (4)0.0252 (3)0.0446 (9)
H10.72680.36760.08010.054*
C20.8062 (5)0.5101 (4)0.0703 (3)0.0516 (10)
H20.70910.60410.08050.062*
C30.9382 (5)0.5188 (5)0.1551 (4)0.0548 (10)
H30.92870.61810.21980.066*
C41.0791 (5)0.3830 (5)0.1428 (3)0.0494 (10)
H41.16580.38900.20030.059*
C51.4138 (4)0.1775 (5)0.0639 (4)0.0505 (10)
H51.49710.16220.00610.061*
C61.4402 (4)0.3276 (5)0.1523 (4)0.0527 (10)
H61.54160.41500.15560.063*
C71.3136 (5)0.3527 (4)0.2406 (4)0.0499 (9)
H71.33210.45770.29920.060*
C81.1682 (4)0.2281 (4)0.2408 (3)0.0406 (8)
H81.08810.24740.30090.049*
C90.9866 (4)0.0716 (4)0.1431 (3)0.0339 (7)
N101.2415 (3)0.1024 (4)0.0353 (3)0.0439 (7)
C110.9627 (4)0.2226 (4)0.0439 (3)0.0356 (7)
C121.0968 (4)0.2310 (4)0.0432 (3)0.0394 (8)
C131.1341 (4)0.0655 (4)0.1502 (3)0.0351 (7)
C141.2605 (4)0.0425 (4)0.0579 (3)0.0401 (8)
C150.8517 (4)0.0640 (4)0.2410 (3)0.0351 (8)
O160.9044 (3)0.0041 (3)0.3649 (2)0.0374 (5)
O170.7146 (3)0.1154 (3)0.2191 (2)0.0531 (7)
C180.7849 (4)0.0068 (4)0.4638 (3)0.0346 (8)
C190.7399 (4)0.1203 (4)0.5313 (3)0.0358 (8)
C200.6281 (4)0.1116 (5)0.6333 (3)0.0435 (9)
H200.59840.19760.67810.052*
C210.5603 (4)0.0257 (5)0.6688 (3)0.0469 (9)
H210.48600.03110.73880.056*
C220.6012 (4)0.1542 (5)0.6020 (3)0.0448 (9)
H220.55370.24730.62540.054*
C230.7139 (4)0.1443 (4)0.4992 (3)0.0395 (8)
Br240.83211 (5)0.30774 (4)0.48304 (4)0.05415 (16)
Br250.77029 (5)0.32050 (5)0.40609 (4)0.05659 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.046 (2)0.034 (2)0.0199 (18)0.0022 (17)0.0136 (18)
C20.058 (3)0.046 (2)0.041 (2)0.0160 (19)0.0039 (18)0.0119 (18)
C30.077 (3)0.047 (2)0.038 (2)0.034 (2)0.007 (2)0.0006 (17)
C40.060 (3)0.060 (2)0.034 (2)0.040 (2)0.0031 (17)0.0074 (18)
C50.042 (2)0.059 (2)0.051 (2)0.0230 (19)0.0138 (17)0.027 (2)
C60.042 (2)0.054 (2)0.053 (2)0.0101 (18)0.0038 (18)0.025 (2)
C70.057 (2)0.040 (2)0.047 (2)0.0196 (19)0.0026 (18)0.0138 (17)
C80.048 (2)0.0409 (19)0.0343 (19)0.0229 (17)0.0062 (16)0.0142 (15)
C90.0397 (19)0.0426 (19)0.0259 (17)0.0243 (16)0.0028 (14)0.0121 (15)
N100.0405 (17)0.0547 (19)0.0351 (17)0.0257 (15)0.0100 (13)0.0138 (15)
C110.0426 (18)0.0445 (19)0.0254 (16)0.0234 (15)0.0012 (14)0.0133 (15)
C120.050 (2)0.052 (2)0.0263 (17)0.0332 (18)0.0040 (15)0.0120 (16)
C130.0389 (19)0.0427 (19)0.0299 (18)0.0221 (16)0.0019 (14)0.0145 (15)
C140.0379 (19)0.053 (2)0.038 (2)0.0246 (17)0.0065 (15)0.0223 (18)
C150.040 (2)0.0394 (18)0.0269 (18)0.0209 (16)0.0024 (14)0.0096 (14)
O160.0305 (12)0.0459 (13)0.0282 (12)0.0157 (10)0.0055 (10)0.0101 (10)
O170.0420 (15)0.0836 (19)0.0352 (14)0.0363 (14)0.0005 (11)0.0119 (13)
C180.0318 (18)0.0436 (19)0.0254 (18)0.0166 (15)0.0010 (14)0.0098 (15)
C190.0327 (18)0.0369 (18)0.0301 (18)0.0133 (14)0.0044 (14)0.0047 (14)
C200.039 (2)0.052 (2)0.0326 (19)0.0252 (17)0.0038 (15)0.0046 (16)
C210.038 (2)0.068 (3)0.0320 (19)0.0246 (19)0.0077 (16)0.0171 (18)
C220.042 (2)0.056 (2)0.040 (2)0.0206 (17)0.0058 (16)0.0256 (18)
C230.0421 (19)0.0445 (19)0.0320 (18)0.0239 (16)0.0039 (15)0.0098 (15)
Br240.0545 (3)0.0409 (2)0.0616 (3)0.02163 (18)0.00636 (19)0.01567 (18)
Br250.0730 (3)0.0515 (2)0.0502 (3)0.0379 (2)0.0072 (2)0.01362 (19)
Geometric parameters (Å, º) top
C1—C21.343 (5)C9—C151.493 (4)
C1—C111.422 (5)N10—C121.339 (5)
C1—H10.9300N10—C141.342 (4)
C2—C31.402 (5)C11—C121.428 (5)
C2—H20.9300C13—C141.433 (4)
C3—C41.348 (5)C15—O161.369 (4)
C3—H30.9300C15—O171.182 (4)
C4—C121.420 (5)O16—C181.393 (3)
C4—H40.9300C18—C231.378 (5)
C5—C61.345 (5)C18—C191.382 (5)
C5—C141.416 (5)C19—C201.373 (4)
C5—H50.9300C19—Br241.881 (3)
C6—C71.420 (5)C20—C211.379 (5)
C6—H60.9300C20—H200.9300
C7—C81.336 (5)C21—C221.369 (5)
C7—H70.9300C21—H210.9300
C8—C131.431 (5)C22—C231.385 (4)
C8—H80.9300C22—H220.9300
C9—C131.394 (5)C23—Br251.882 (3)
C9—C111.401 (5)
C2—C1—C11121.0 (3)N10—C12—C4117.4 (3)
C2—C1—H1119.5N10—C12—C11123.4 (3)
C11—C1—H1119.5C4—C12—C11119.2 (3)
C1—C2—C3121.6 (4)C9—C13—C8125.1 (3)
C1—C2—H2119.2C9—C13—C14117.5 (3)
C3—C2—H2119.2C8—C13—C14117.4 (3)
C4—C3—C2119.9 (3)N10—C14—C5117.5 (3)
C4—C3—H3120.0N10—C14—C13123.1 (3)
C2—C3—H3120.0C5—C14—C13119.4 (3)
C3—C4—C12120.8 (3)C9—C15—O16111.0 (3)
C3—C4—H4119.6C9—C15—O17126.6 (3)
C12—C4—H4119.6C15—O16—C18116.1 (2)
C6—C5—C14120.8 (3)O16—C15—O17122.4 (3)
C6—C5—H5119.6C23—C18—C19118.9 (3)
C14—C5—H5119.6C23—C18—O16119.6 (3)
C5—C6—C7120.1 (3)C19—C18—O16121.4 (3)
C5—C6—H6119.9C20—C19—C18120.8 (3)
C7—C6—H6119.9C20—C19—Br24119.4 (3)
C8—C7—C6121.2 (3)C18—C19—Br24119.8 (2)
C8—C7—H7119.4C19—C20—C21119.5 (3)
C6—C7—H7119.4C19—C20—H20120.2
C7—C8—C13121.0 (3)C21—C20—H20120.2
C7—C8—H8119.5C22—C21—C20120.7 (3)
C13—C8—H8119.5C22—C21—H21119.7
C13—C9—C11120.2 (3)C20—C21—H21119.7
C13—C9—C15121.7 (3)C21—C22—C23119.4 (3)
C11—C9—C15118.1 (3)C21—C22—H22120.3
C12—N10—C14118.3 (3)C23—C22—H22120.3
C9—C11—C1125.1 (3)C18—C23—C22120.7 (3)
C9—C11—C12117.4 (3)C18—C23—Br25119.5 (2)
C1—C11—C12117.5 (3)C22—C23—Br25119.8 (3)
C11—C1—C2—C30.2 (6)C6—C5—C14—N10178.0 (4)
C1—C2—C3—C41.0 (6)C6—C5—C14—C132.2 (6)
C2—C3—C4—C121.2 (6)C9—C13—C14—N101.5 (5)
C14—C5—C6—C70.4 (6)C8—C13—C14—N10177.3 (3)
C5—C6—C7—C82.3 (6)C9—C13—C14—C5178.2 (3)
C6—C7—C8—C131.4 (6)C8—C13—C14—C53.0 (5)
C13—C9—C11—C1178.5 (3)C13—C9—C15—O17132.9 (4)
C15—C9—C11—C12.9 (5)C15—O16—C18—C2387.1 (4)
C13—C9—C11—C123.2 (5)C13—C9—C15—O1650.6 (4)
C15—C9—C11—C12175.4 (3)C11—C9—C15—O16128.1 (3)
C2—C1—C11—C9177.9 (4)O17—C15—O16—C186.9 (5)
C2—C1—C11—C120.4 (5)C9—C15—O16—C18169.8 (3)
C14—N10—C12—C4179.7 (3)C11—C9—C15—O1748.4 (5)
C14—N10—C12—C111.3 (5)C15—O16—C18—C1995.5 (3)
C3—C4—C12—N10178.5 (3)C23—C18—C19—C201.0 (5)
C3—C4—C12—C110.6 (5)O16—C18—C19—C20176.5 (3)
C9—C11—C12—N100.8 (5)C23—C18—C19—Br24178.9 (2)
C1—C11—C12—N10179.2 (3)O16—C18—C19—Br243.6 (4)
C9—C11—C12—C4178.2 (3)C18—C19—C20—C210.1 (5)
C1—C11—C12—C40.2 (5)Br24—C19—C20—C21180.0 (3)
C11—C9—C13—C8175.1 (3)C19—C20—C21—C221.1 (5)
C15—C9—C13—C86.3 (5)C20—C21—C22—C231.1 (5)
C11—C9—C13—C143.6 (5)C19—C18—C23—C221.0 (5)
C15—C9—C13—C14175.1 (3)O16—C18—C23—C22176.5 (3)
C7—C8—C13—C9179.9 (3)C19—C18—C23—Br25178.6 (2)
C7—C8—C13—C141.3 (5)O16—C18—C23—Br253.9 (4)
C12—N10—C14—C5179.4 (3)C21—C22—C23—C180.0 (5)
C12—N10—C14—C130.9 (5)C21—C22—C23—Br25179.7 (3)

Experimental details

Crystal data
Chemical formulaC20H11Br2NO2
Mr457.12
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)9.385 (2), 9.840 (2), 11.246 (2)
α, β, γ (°)66.22 (3), 77.23 (3), 61.85 (3)
V3)837.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.112, 0.233
No. of measured, independent and
observed [I > 2σ(I)] reflections
3074, 2909, 1803
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 0.85
No. of reflections2909
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: KM-4 Software (Kuma, 1989), KM-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
C9—C111.401 (5)C15—O171.182 (4)
C9—C151.493 (4)O16—C181.393 (3)
N10—C121.339 (5)C18—C191.382 (5)
C15—O161.369 (4)C19—Br241.881 (3)
C9—C15—O16111.0 (3)C15—O16—C18116.1 (2)
C9—C15—O17126.6 (3)O16—C15—O17122.4 (3)
C9—C15—O16—C18169.8 (3)C15—O16—C18—C1995.5 (3)
C11—C9—C15—O1748.4 (5)O16—C18—C19—Br243.6 (4)
ππ interactions (Å, °) in the title compound. top
CgICgJCg···CgDihedral angleInterplanar dist.Offset
11i3.880 (2)0.03.590 (3)1.472 (2)
22ii3.766 (2)0.03.491 (3)1.413 (2)
23i3.890 (2)2.03.479 (3)1.740 (2)
32i3.890 (2)2.03.530 (3)1.634 (2)
Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 2 − x, −y, −z.

Notes: Cg represents the centre of gravity of the rings, as follows: Cg1, ring C9/C11/C12/N10/C14/C13; Cg2, ring C1/C2/C3/C4/C12/C11; Cg3, ring C5/C6/C7/C8/C13/C14. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. Offset is the perpendicular distance of ring I from ring J.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds