Download citation
Download citation
link to html
In the title complex, [Hg(NO3)2(C10H15N3OS)2], the HgII ion (site symmetry \overline{1}) adopts a grossly distorted octa­hedral geometry by chelation of two neutral Him-thz ligands [Him-thz is 2-(2′-thia­zole)-4,4,5,5-tetra­methyl­dihydro-1H-imidazolyl-1-hydr­oxy] through their thia­zole N atoms [Hg—N = 2.846 (2) Å] and reduced imino nitroxide N atoms [Hg—N = 2.055 (2) Å], leading to a five-membered ring, together with two O atoms from two nitrate anions [Hg—O = 2.859 (3) Å]. The mol­ecules form one-dimensional chains by way of inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030060/hb6265sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030060/hb6265Isup2.hkl
Contains datablock I

CCDC reference: 287567

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.020
  • wR factor = 0.056
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.41 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N4 PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.19 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The engineering of molecular magnets constitutes a major contemporary research aim and has spawned interest in organic radicals as building blocks for the construction of such materials (Yamamoto et al., 2001; Aoki et al., 2003; Iino et al., 2003; Pillet et al., 2001). In the past two decades, there have been a large number of investigations on magneto/structural chemistry of transition metal complexes containing nitronyl and imino nitroxide radicals (Taylor et al., 2003; Zhou et al., 2004; Wang et al., 2003; Ruiz et al., 2000). However, nitroxide radicals can undergo redox reactions with transition metal ions and the mechanistic details of the reduction of the imino radicals are not completely clear. It is likely that the imino radicals are reduced by acidic impurities or other experimental conditions during the reaction process (Jiang et al., 1998; Li et al., 2001). In this paper, we report the synthesis and crystal structure of the title compound, (I) (Fig. 1), Hg(Him-thz)2(NO3)2, where Him-thz = 2-(2'-thiazole)-4,4,5,5-tetramethyldihydro-1H-imidazolyl-1-hydroxy), i.e. the reduced IM-thz radical.

The mercury(II) ion (site symmetry 1) in (I) is six-coordinated in a grossly distorted octahedral HgN4O2 environment. Two Him-thz molecules acting as bidentate chelating ligands, coordinate the mercury(II) ion through a very long (Table 1) Hg—N bond to the N atom of the thiazole ring and a short Hg—N bond to the N atom of the imidazole ring leading to a five-membered chelate rings. The mercury coordination is completed by long Hg—O bonds to nearby monodentate nitrate anions. Similar Hg—N and Hg—O bond lengths have been seen in other complexes (Lee et al., 1998; Kim et al., 1998).

Molecules of (I) are linked into chains by way of an O—H···O hydrogen bond (Fig. 2 and Table 2) involving a reduced N—OH group as donor and a nitrate O atom as acceptor.

Experimental top

IM-thz was synthesized using a method in the literature (Ullman et al., 1972 or ??1970). Diethyl ether vapor was diffused into acetonitrile solution (6 ml) containing Hg(NO3)2 (0.25 mmol) and IM-thz (0.5 mmol) in a closed vessel in the dark for two weeks, affording red blocks of (I) suitable for X-ray analysis. Analysis calculated for C20H30HgS2N8O8: C 30.98, H 3.90, N 14.46%; found: C 31.03, H 3.81, N 14.37%.

Refinement top

The H atoms were located geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Computing details top

Data collection: APEX II (Bruker, 2004); cell refinement: APEX II; data reduction: SAINT (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing 30% probability displacment ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) 1/2 − x, 1/2 − y, 1 − z.]
[Figure 2] Fig. 2. Detail of (I), showing the intermolecular O—H···O hydrogen bonds as dashed lines.
(I) top
Crystal data top
[Hg(C10H15N3OS)2(NO3)2]F(000) = 1528
Mr = 775.22Dx = 1.839 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6354 reflections
a = 19.758 (4) Åθ = 2.3–28.7°
b = 13.580 (3) ŵ = 5.70 mm1
c = 11.587 (3) ÅT = 295 K
β = 115.739 (3)°Block, red
V = 2800.3 (11) Å30.36 × 0.24 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3212 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.202, Tmax = 0.425k = 1717
11946 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0288P)2 + 3.1412P]
where P = (Fo2 + 2Fc2)/3
3212 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Hg(C10H15N3OS)2(NO3)2]V = 2800.3 (11) Å3
Mr = 775.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.758 (4) ŵ = 5.70 mm1
b = 13.580 (3) ÅT = 295 K
c = 11.587 (3) Å0.36 × 0.24 × 0.15 mm
β = 115.739 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2498 reflections with I > 2σ(I)
Tmin = 0.202, Tmax = 0.425Rint = 0.016
11946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.03Δρmax = 0.96 e Å3
3212 reflectionsΔρmin = 0.40 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.25000.25000.50000.04859 (6)
S10.43205 (5)0.48240 (6)0.82883 (8)0.0656 (2)
O10.45347 (14)0.31673 (16)0.9825 (2)0.0702 (6)
H10.49800.30121.01590.105*
O20.4047 (2)0.2581 (2)0.4725 (4)0.1045 (12)
O30.4007 (2)0.2036 (3)0.2983 (3)0.1112 (10)
O40.32587 (17)0.1501 (2)0.3728 (4)0.1127 (11)
N10.33715 (14)0.42170 (17)0.6085 (2)0.0523 (6)
N20.32075 (15)0.22847 (17)0.6903 (2)0.0473 (5)
N30.41408 (16)0.25380 (14)0.8804 (3)0.0523 (6)
N40.37707 (17)0.2034 (2)0.3807 (3)0.0674 (7)
C10.40165 (18)0.5627 (2)0.7046 (3)0.0643 (8)
H1A0.41670.62810.71020.077*
C20.35261 (18)0.5186 (2)0.5967 (3)0.0572 (7)
H20.33060.55170.51880.069*
C30.37655 (16)0.3925 (2)0.7267 (3)0.0461 (6)
C40.37006 (15)0.2924 (2)0.7654 (3)0.0426 (5)
C50.33397 (17)0.1318 (2)0.7599 (3)0.0510 (6)
C60.37633 (16)0.1656 (2)0.9020 (3)0.0506 (6)
C70.3818 (3)0.0700 (3)0.7140 (4)0.0885 (13)
H7A0.35590.06190.62280.133*
H7B0.39080.00670.75470.133*
H7C0.42890.10270.73560.133*
C80.2598 (2)0.0810 (3)0.7286 (3)0.0826 (12)
H8A0.22750.12450.74720.124*
H8B0.26850.02240.77940.124*
H8C0.23630.06390.63940.124*
C90.4339 (2)0.0927 (3)0.9906 (3)0.0790 (11)
H9A0.47240.08260.96220.119*
H9B0.40960.03120.98920.119*
H9C0.45600.11831.07630.119*
C100.3241 (2)0.1990 (3)0.9601 (3)0.0788 (10)
H10A0.35300.23061.04090.118*
H10B0.29860.14290.97280.118*
H10C0.28790.24460.90300.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05756 (10)0.04837 (9)0.03641 (8)0.00462 (7)0.01720 (7)0.00048 (6)
S10.0729 (5)0.0483 (4)0.0584 (4)0.0122 (4)0.0124 (4)0.0021 (3)
O10.0802 (16)0.0499 (12)0.0503 (12)0.0002 (11)0.0000 (11)0.0045 (10)
O20.093 (2)0.118 (3)0.102 (3)0.0023 (16)0.043 (2)0.0382 (18)
O30.137 (3)0.129 (3)0.091 (2)0.023 (2)0.072 (2)0.017 (2)
O40.087 (2)0.099 (2)0.161 (3)0.0109 (18)0.062 (2)0.017 (2)
N10.0614 (14)0.0444 (12)0.0481 (13)0.0018 (11)0.0209 (11)0.0033 (10)
N20.0561 (14)0.0448 (12)0.0390 (12)0.0033 (10)0.0186 (11)0.0017 (9)
N30.0574 (14)0.0415 (12)0.0448 (13)0.0010 (10)0.0099 (11)0.0008 (9)
N40.0658 (18)0.0631 (18)0.076 (2)0.0176 (15)0.0333 (16)0.0088 (16)
C10.073 (2)0.0433 (16)0.073 (2)0.0063 (14)0.0286 (17)0.0038 (14)
C20.0701 (19)0.0437 (14)0.0585 (17)0.0042 (13)0.0285 (15)0.0100 (13)
C30.0490 (15)0.0413 (14)0.0482 (15)0.0000 (11)0.0214 (12)0.0024 (11)
C40.0463 (14)0.0383 (13)0.0423 (14)0.0055 (11)0.0184 (12)0.0001 (11)
C50.0664 (18)0.0409 (14)0.0477 (15)0.0040 (13)0.0265 (14)0.0031 (11)
C60.0560 (16)0.0449 (15)0.0443 (14)0.0006 (12)0.0158 (13)0.0041 (11)
C70.147 (4)0.051 (2)0.090 (3)0.020 (2)0.072 (3)0.0025 (19)
C80.091 (3)0.081 (2)0.058 (2)0.034 (2)0.0160 (19)0.0144 (18)
C90.081 (2)0.0545 (19)0.074 (2)0.0032 (17)0.0088 (19)0.0239 (17)
C100.102 (3)0.087 (3)0.060 (2)0.001 (2)0.047 (2)0.0018 (19)
Geometric parameters (Å, º) top
Hg1—N22.055 (2)C1—H1A0.9300
Hg1—N12.846 (2)C2—H20.9300
Hg1—O42.859 (3)C3—C41.455 (4)
Hg1—N2i2.055 (2)C5—C81.515 (4)
Hg1—N1i2.846 (2)C5—C71.522 (4)
Hg1—O4i2.859 (3)C5—C61.558 (4)
S1—C11.695 (3)C6—C91.521 (4)
S1—C31.722 (3)C6—C101.524 (4)
N3—O11.391 (3)C7—H7A0.9600
O1—H10.8200C7—H7B0.9600
O2—N41.214 (5)C7—H7C0.9600
O3—N41.231 (4)C8—H8A0.9600
O4—N41.215 (4)C8—H8B0.9600
N1—C31.309 (4)C8—H8C0.9600
N1—C21.371 (4)C9—H9A0.9600
C4—N21.313 (4)C9—H9B0.9600
N2—C51.503 (3)C9—H9C0.9600
C4—N31.342 (4)C10—H10A0.9600
N3—C61.488 (4)C10—H10B0.9600
C1—C21.345 (4)C10—H10C0.9600
N2i—Hg1—N1110.89 (8)N2—C4—C3123.6 (3)
N2—Hg1—N169.11 (8)N3—C4—C3124.4 (3)
N2i—Hg1—O477.24 (10)N2—C5—C8110.2 (3)
N2—Hg1—O4102.76 (10)N2—C5—C7106.4 (2)
N1—Hg1—O4105.32 (8)C8—C5—C7110.4 (3)
N1i—Hg1—O474.68 (10)N2—C5—C6101.4 (2)
N2—Hg1—N1i110.89 (8)C8—C5—C6114.0 (3)
N2i—Hg1—N1i69.11 (8)C7—C5—C6113.7 (3)
N2—Hg1—O4i77.24 (10)N3—C6—C9110.8 (3)
N2i—Hg1—O4i102.76 (10)N3—C6—C10108.6 (3)
N1i—Hg1—O4i105.32 (8)C9—C6—C10110.3 (3)
N1—Hg1—O4i74.68 (10)N3—C6—C597.9 (2)
N2i—Hg1—N2180.0C9—C6—C5115.0 (3)
O4—Hg1—O4i180.0C10—C6—C5113.5 (3)
N1—Hg1—N1i180.0C5—C7—H7A109.5
N4—O4—Hg1106.5 (2)C5—C7—H7B109.5
C1—S1—C389.29 (15)H7A—C7—H7B109.5
N3—O1—H1109.5C5—C7—H7C109.5
C3—N1—C2109.8 (2)H7A—C7—H7C109.5
C4—N2—C5108.4 (2)H7B—C7—H7C109.5
C4—N2—Hg1125.50 (19)C5—C8—H8A109.5
C5—N2—Hg1125.36 (18)C5—C8—H8B109.5
C4—N3—O1119.1 (2)H8A—C8—H8B109.5
C4—N3—C6109.0 (2)C5—C8—H8C109.5
O1—N3—C6119.2 (3)H8A—C8—H8C109.5
O2—N4—O4118.2 (4)H8B—C8—H8C109.5
O2—N4—O3120.0 (4)C6—C9—H9A109.5
O4—N4—O3121.7 (4)C6—C9—H9B109.5
C2—C1—S1110.4 (2)H9A—C9—H9B109.5
C2—C1—H1A124.8C6—C9—H9C109.5
S1—C1—H1A124.8H9A—C9—H9C109.5
C1—C2—N1115.9 (3)H9B—C9—H9C109.5
C1—C2—H2122.1C6—C10—H10A109.5
N1—C2—H2122.1C6—C10—H10B109.5
N1—C3—C4120.9 (2)H10A—C10—H10B109.5
N1—C3—S1114.6 (2)C6—C10—H10C109.5
C4—C3—S1124.5 (2)H10A—C10—H10C109.5
N2—C4—N3112.0 (2)H10B—C10—H10C109.5
C3—S1—C1—C20.3 (3)Hg1—N2—C5—C846.4 (3)
S1—C1—C2—N10.5 (4)C4—N2—C5—C797.1 (3)
C3—N1—C2—C11.4 (4)Hg1—N2—C5—C773.4 (3)
C2—N1—C3—C4179.4 (3)C4—N2—C5—C622.1 (3)
C2—N1—C3—S11.6 (3)Hg1—N2—C5—C6167.48 (19)
C1—S1—C3—N11.1 (2)C4—N3—C6—C9152.1 (3)
C1—S1—C3—C4178.9 (3)O1—N3—C6—C966.6 (3)
C5—N2—C4—N32.4 (3)C4—N3—C6—C1086.6 (3)
Hg1—N2—C4—N3172.9 (2)O1—N3—C6—C1054.8 (3)
C5—N2—C4—C3176.6 (2)C4—N3—C6—C531.5 (3)
Hg1—N2—C4—C36.1 (4)O1—N3—C6—C5172.9 (2)
O1—N3—C4—N2161.4 (3)N2—C5—C6—N330.4 (3)
C6—N3—C4—N220.0 (3)C8—C5—C6—N3148.8 (3)
O1—N3—C4—C319.6 (4)C7—C5—C6—N383.4 (3)
C6—N3—C4—C3161.0 (3)N2—C5—C6—C9147.8 (3)
N1—C3—C4—N26.4 (4)C8—C5—C6—C993.8 (3)
S1—C3—C4—N2171.3 (2)C7—C5—C6—C934.0 (4)
N1—C3—C4—N3172.5 (3)N2—C5—C6—C1083.9 (3)
S1—C3—C4—N39.8 (4)C8—C5—C6—C1034.5 (4)
C4—N2—C5—C8143.2 (3)C7—C5—C6—C10162.2 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.962.737 (5)158
Symmetry code: (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Hg(C10H15N3OS)2(NO3)2]
Mr775.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)19.758 (4), 13.580 (3), 11.587 (3)
β (°) 115.739 (3)
V3)2800.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)5.70
Crystal size (mm)0.36 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.202, 0.425
No. of measured, independent and
observed [I > 2σ(I)] reflections
11946, 3212, 2498
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.03
No. of reflections3212
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.40

Computer programs: APEX II (Bruker, 2004), APEX II, SAINT (Bruker 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker 2004), SHELXTL.

Selected bond lengths (Å) top
Hg1—N22.055 (2)N3—O11.391 (3)
Hg1—N12.846 (2)C4—N21.313 (4)
Hg1—O42.859 (3)C4—N31.342 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.737 (5)158
Symmetry code: (i) x+1, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds