Download citation
Download citation
link to html
In the crystal structure of the title compound, C11H14N2O4, which can be used as an inter­mediate for the syhtnesis of isocyanates, there are two inter­molecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029958/is6122sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029958/is6122Isup2.hkl
Contains datablock I

CCDC reference: 287609

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.052
  • wR factor = 0.171
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.64 mm PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I), can be used as an intermediate for isocyanate (Uriz et al., 2002). Compound (I) was first prepared from toluene 2,4-bis(isocyanate) by reaction with methanol by Siefken (1949), but the single-crystal structure has not been reported until now.

The molecular structure of (I) is shown in Fig. 1. The crystal packing projected on to the bc face is shown in Fig. 2. There are two kinds of intermolecular N—H···O hydrogen bonds (Table 1). The N1—H1A···O3 and N2—H2A···O1 hydrogen bonds are approximately parallel to the ab face.

Experimental top

Toluene-2,4-bis(isocyanate) (TDI) was provided by Hebei Cangzhou Dahua Co. Ltd. The raw material was purified twice by a melt crystallization process. Compound (I) was prepared by the reaction of purified TDI with methanol (m.p. 446.5 K by differential scanning calorimetry). Colorless needle-like single crystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution at room temperature for 3 d.

Refinement top

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with distances C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of compound, (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
(3-methoxycarbonylamino-4-methyl-phenyl)-carbamic acid methyl ester top
Crystal data top
C11H14N2O4F(000) = 252
Mr = 238.24Dx = 1.371 Mg m3
Triclinic, P1Melting point: 446.5 K
a = 7.4223 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1444 (16) ÅCell parameters from 5473 reflections
c = 10.642 (2) Åθ = 3.1–27.5°
α = 74.01 (3)°µ = 0.11 mm1
β = 71.64 (3)°T = 293 K
γ = 75.44 (3)°Needle, colorless
V = 577.3 (2) Å30.64 × 0.22 × 0.17 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2630 independent reflections
Radiation source: rotating2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
oscillation scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.936, Tmax = 0.982k = 1010
5743 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1123P)2 + 0.3315P]
where P = (Fo2 + 2Fc2)/3
2630 reflections(Δ/σ)max = 0.036
154 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C11H14N2O4γ = 75.44 (3)°
Mr = 238.24V = 577.3 (2) Å3
Triclinic, P1Z = 2
a = 7.4223 (15) ÅMo Kα radiation
b = 8.1444 (16) ŵ = 0.11 mm1
c = 10.642 (2) ÅT = 293 K
α = 74.01 (3)°0.64 × 0.22 × 0.17 mm
β = 71.64 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2630 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2314 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.982Rint = 0.029
5743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
2630 reflectionsΔρmin = 0.57 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33340 (17)0.73705 (15)1.20270 (12)0.0233 (3)
O20.37757 (17)0.91187 (16)1.34595 (12)0.0249 (3)
O30.00446 (19)0.87208 (15)0.69320 (12)0.0255 (3)
O40.08246 (19)0.62559 (15)0.61361 (12)0.0248 (3)
N10.0934 (2)0.87128 (17)1.19914 (13)0.0197 (3)
H1A0.07100.94051.23830.024*
N20.1690 (2)0.62084 (17)0.79504 (13)0.0213 (3)
H2A0.21150.51260.79410.026*
C10.5723 (3)0.8800 (3)1.4021 (2)0.0336 (4)
H1B0.63720.94181.47360.050*
H1C0.57000.75791.43770.050*
H1D0.63950.91921.33260.050*
C20.2716 (2)0.83156 (19)1.24363 (15)0.0185 (3)
C30.0603 (2)0.81108 (19)1.09499 (15)0.0183 (3)
C40.2441 (3)0.8301 (2)1.08909 (17)0.0242 (4)
H4A0.26120.87911.15290.029*
C50.4019 (2)0.7761 (2)0.98834 (18)0.0269 (4)
H5A0.52400.78870.98630.032*
C60.3826 (2)0.7037 (2)0.89026 (17)0.0237 (4)
C70.5543 (3)0.6479 (3)0.7805 (2)0.0334 (4)
H7A0.51330.60090.72280.050*
H7B0.64600.56100.82070.050*
H7C0.61320.74630.72790.050*
C80.1970 (2)0.68845 (19)0.89642 (15)0.0192 (3)
C90.0363 (2)0.73963 (19)0.99751 (15)0.0183 (3)
H9A0.08570.72631.00000.022*
C100.0790 (2)0.71934 (19)0.70128 (15)0.0187 (3)
C110.0015 (3)0.7180 (2)0.50313 (17)0.0271 (4)
H11A0.00880.64000.44710.041*
H11B0.06590.81120.45020.041*
H11C0.13500.76440.53850.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (6)0.0224 (6)0.0266 (6)0.0026 (5)0.0078 (5)0.0115 (5)
O20.0253 (6)0.0297 (6)0.0224 (6)0.0059 (5)0.0013 (5)0.0147 (5)
O30.0360 (7)0.0185 (6)0.0267 (6)0.0014 (5)0.0151 (5)0.0075 (5)
O40.0380 (7)0.0202 (6)0.0198 (6)0.0042 (5)0.0107 (5)0.0075 (4)
N10.0261 (7)0.0188 (6)0.0168 (6)0.0049 (5)0.0053 (5)0.0073 (5)
N20.0305 (7)0.0157 (6)0.0183 (7)0.0010 (5)0.0067 (5)0.0068 (5)
C10.0245 (8)0.0467 (11)0.0325 (10)0.0085 (8)0.0010 (7)0.0210 (8)
C20.0247 (7)0.0151 (7)0.0160 (7)0.0000 (5)0.0072 (6)0.0049 (5)
C30.0239 (7)0.0144 (6)0.0160 (7)0.0021 (5)0.0061 (6)0.0025 (5)
C40.0275 (8)0.0274 (8)0.0215 (8)0.0053 (6)0.0101 (6)0.0068 (6)
C50.0219 (8)0.0339 (9)0.0267 (9)0.0049 (7)0.0081 (6)0.0075 (7)
C60.0246 (8)0.0228 (8)0.0207 (8)0.0010 (6)0.0054 (6)0.0037 (6)
C70.0254 (9)0.0389 (10)0.0300 (10)0.0000 (7)0.0013 (7)0.0105 (8)
C80.0262 (8)0.0145 (7)0.0157 (7)0.0013 (6)0.0060 (6)0.0028 (5)
C90.0215 (7)0.0166 (7)0.0173 (7)0.0034 (6)0.0059 (6)0.0035 (5)
C100.0227 (7)0.0187 (7)0.0160 (7)0.0076 (6)0.0025 (5)0.0053 (5)
C110.0367 (9)0.0280 (8)0.0211 (8)0.0088 (7)0.0115 (7)0.0057 (6)
Geometric parameters (Å, º) top
O1—C21.217 (2)C3—C91.396 (2)
O2—C21.3513 (19)C4—C51.387 (2)
O2—C11.439 (2)C4—H4A0.9300
O3—C101.219 (2)C5—C61.391 (2)
O4—C101.3498 (18)C5—H5A0.9300
O4—C111.440 (2)C6—C81.394 (2)
N1—C21.347 (2)C6—C71.503 (2)
N1—C31.411 (2)C7—H7A0.9600
N1—H1A0.8600C7—H7B0.9600
N2—C101.339 (2)C7—H7C0.9600
N2—C81.427 (2)C8—C91.394 (2)
N2—H2A0.8600C9—H9A0.9300
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C1—H1D0.9600C11—H11C0.9600
C3—C41.391 (2)
C2—O2—C1114.85 (13)C4—C5—H5A119.1
C10—O4—C11116.20 (12)C5—C6—C8117.22 (15)
C2—N1—C3126.77 (13)C5—C6—C7121.28 (16)
C2—N1—H1A116.6C8—C6—C7121.49 (16)
C3—N1—H1A116.6C6—C7—H7A109.5
C10—N2—C8122.57 (13)C6—C7—H7B109.5
C10—N2—H2A118.7H7A—C7—H7B109.5
C8—N2—H2A118.7C6—C7—H7C109.5
O2—C1—H1B109.5H7A—C7—H7C109.5
O2—C1—H1C109.5H7B—C7—H7C109.5
H1B—C1—H1C109.5C6—C8—C9122.17 (15)
O2—C1—H1D109.5C6—C8—N2119.26 (14)
H1B—C1—H1D109.5C9—C8—N2118.57 (14)
H1C—C1—H1D109.5C8—C9—C3119.33 (15)
O1—C2—N1127.34 (15)C8—C9—H9A120.3
O1—C2—O2123.15 (15)C3—C9—H9A120.3
N1—C2—O2109.51 (13)O3—C10—N2126.19 (14)
C4—C3—C9119.32 (15)O3—C10—O4123.54 (14)
C4—C3—N1116.91 (14)N2—C10—O4110.27 (13)
C9—C3—N1123.75 (14)O4—C11—H11A109.5
C3—C4—C5120.18 (15)O4—C11—H11B109.5
C3—C4—H4A119.9H11A—C11—H11B109.5
C5—C4—H4A119.9O4—C11—H11C109.5
C6—C5—C4121.78 (16)H11A—C11—H11C109.5
C6—C5—H5A119.1H11B—C11—H11C109.5
C3—N1—C2—O10.1 (3)C5—C6—C8—N2177.72 (14)
C3—N1—C2—O2178.99 (13)C7—C6—C8—N21.0 (2)
C1—O2—C2—O11.1 (2)C10—N2—C8—C6110.21 (18)
C1—O2—C2—N1179.77 (14)C10—N2—C8—C968.8 (2)
C2—N1—C3—C4163.47 (15)C6—C8—C9—C31.0 (2)
C2—N1—C3—C918.4 (2)N2—C8—C9—C3178.01 (13)
C9—C3—C4—C50.9 (2)C4—C3—C9—C80.1 (2)
N1—C3—C4—C5179.12 (14)N1—C3—C9—C8178.20 (13)
C3—C4—C5—C60.6 (3)C8—N2—C10—O33.2 (3)
C4—C5—C6—C80.5 (3)C8—N2—C10—O4176.39 (13)
C4—C5—C6—C7179.15 (16)C11—O4—C10—O32.5 (2)
C5—C6—C8—C91.3 (2)C11—O4—C10—N2177.14 (13)
C7—C6—C8—C9179.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.082.9339 (18)172
N2—H2A···O1ii0.862.002.8597 (19)174
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H14N2O4
Mr238.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4223 (15), 8.1444 (16), 10.642 (2)
α, β, γ (°)74.01 (3), 71.64 (3), 75.44 (3)
V3)577.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.64 × 0.22 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.936, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5743, 2630, 2314
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.171, 1.01
No. of reflections2630
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.57

Computer programs: RAPID-AUTO (Rigaku, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.082.9339 (18)172
N2—H2A···O1ii0.862.002.8597 (19)174
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds