Download citation
Download citation
link to html
The title compound, C15H22NO4S, is a nitroxyl radical, which is stable mainly because the N atom is surrounded by tertiary C atoms, preventing formation of the nitrone. More significantly, inter­molecular C—H...O hydrogen bonding contributes to the stability of the structure with weak intra­molecular C—H...π(arene) inter­actions. The N—O distance is 1.2816 (18) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028035/jh6014sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028035/jh6014Isup2.hkl
Contains datablock I

CCDC reference: 287613

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.146
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Nitroxyl radicals are compounds containing an NO group that has one unpaired electron. The structure of this fragment can be conceived as a superposition of two resonance structures (see scheme 2). The contribution of the first or second structure to the ground state may be different, depending on the effects of conjugation and polarity of the medium. Piloty & Schwerin (1901) prepared the first organic nitroxyl. The structure and free radical of this nitroxyl was later determined (Holden et al., 1951). A widely used general procedure for the preparation of aromatic nitroxyls was developed (Wieland & Roth, 1920 or?? 1914; Wieland & Kogl, 1922). A considerable amount of research, both theoretical and experimental, has been devoted to the electronic structure of nitroxyls (Stone et al., 1965; Karimov et al., 1969). It has been suggested that nitroxyl radicals are stable when the N atom is surrounded by tertiary C atoms, as formation of nitrones would not be possible in this case (Johnson et al., 1956), the absence of α-H atoms ensuring the stability of nitroxyls. The title compound, (I) (Fig. 1), is a stable radical whose structure cannot be identified through 1H NMR. Selected bond distances and angles describing the molecular conformation are listed in Table 1. The N1/C12/C15/C7–C9 ring exists as a chair conformation. The molecules are conneted by intermolecular hydrogen bonding (Fig. 2). In addition, methyl atom C15 is involved in weak C—H···π interactions.

Experimental top

The title compound was synthesized according to the literature procedure (Rozantsev & Sholle, 1971); details of the synthesis will be published elsewhere (reference?). Crystals suitable for data collection were obtained by slow evaporation from an acetone–hexane solution at 293 K.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions, with C—H distances in the range 0.93–0.98 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding in the crystal structure of (I). Hydrogen-bonding interactions are indicated by dashed lines.
4-(Benzenesulfonyloxy)-2,2,6,6-tetramethylpiperidin-4-yl oxide top
Crystal data top
C15H22NO4SDx = 1.248 Mg m3
Mr = 312.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3922 reflections
a = 11.4827 (9) Åθ = 2.5–22.4°
b = 15.6864 (13) ŵ = 0.21 mm1
c = 18.4671 (14) ÅT = 273 K
V = 3326.3 (5) Å3Block, yellow
Z = 80.30 × 0.30 × 0.20 mm
F(000) = 1336
Data collection top
Bruker SMART CCD area-detector
diffractometer
2525 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
ϕ and ω scansh = 1214
18434 measured reflectionsk = 2019
3629 independent reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.3954P]
where P = (Fo2 + 2Fc2)/3
3629 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H22NO4SV = 3326.3 (5) Å3
Mr = 312.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4827 (9) ŵ = 0.21 mm1
b = 15.6864 (13) ÅT = 273 K
c = 18.4671 (14) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2525 reflections with I > 2σ(I)
18434 measured reflectionsRint = 0.034
3629 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3629 reflectionsΔρmin = 0.28 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.02844 (19)0.33670 (14)0.53261 (12)0.0665 (6)
H10.95910.31370.51540.080*
C21.0313 (3)0.41762 (17)0.55983 (15)0.0884 (8)
H20.96320.44960.56190.106*
C31.1340 (4)0.4520 (2)0.58415 (16)0.1036 (10)
H31.13550.50720.60250.124*
C41.2338 (3)0.4052 (2)0.58137 (16)0.1004 (9)
H41.30330.42910.59730.120*
C51.23332 (19)0.32346 (16)0.55544 (12)0.0718 (6)
H51.30140.29130.55430.086*
C61.12949 (14)0.28984 (13)0.53097 (10)0.0519 (5)
C71.00910 (15)0.13201 (11)0.61446 (10)0.0508 (4)
H70.94690.15950.58660.061*
C80.97895 (19)0.04081 (13)0.63038 (11)0.0642 (5)
H8A1.04280.01470.65670.077*
H8B0.96990.01030.58500.077*
C90.86755 (18)0.03165 (13)0.67459 (11)0.0634 (5)
C100.7597 (2)0.0459 (2)0.62763 (15)0.1012 (9)
H10A0.69110.04150.65710.152*
H10B0.75710.00360.59010.152*
H10C0.76330.10160.60620.152*
C110.8633 (3)0.05716 (15)0.70819 (16)0.1059 (10)
H11A0.92450.06270.74330.159*
H11B0.87340.09930.67100.159*
H11C0.78930.06540.73140.159*
C120.92191 (18)0.18064 (12)0.73262 (10)0.0567 (5)
C130.8329 (2)0.24558 (15)0.70519 (16)0.0925 (8)
H13A0.80960.23080.65690.139*
H13B0.86720.30140.70520.139*
H13C0.76590.24530.73630.139*
C140.9582 (3)0.2023 (2)0.81001 (13)0.0993 (9)
H14A0.89020.20700.83990.149*
H14B0.99960.25550.81030.149*
H14C1.00780.15810.82850.149*
C151.02968 (16)0.17819 (12)0.68435 (11)0.0573 (5)
H15A1.05390.23610.67390.069*
H15B1.09250.15040.71030.069*
N10.86669 (13)0.09481 (10)0.73510 (8)0.0534 (4)
O11.23793 (13)0.16091 (11)0.47258 (9)0.0821 (5)
O21.02591 (13)0.17030 (10)0.45846 (7)0.0728 (4)
O31.11842 (10)0.13037 (9)0.57267 (7)0.0620 (4)
O40.78658 (14)0.08463 (10)0.78265 (8)0.0761 (4)
S11.12719 (4)0.18359 (3)0.50120 (3)0.05666 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0558 (12)0.0702 (14)0.0735 (14)0.0004 (10)0.0035 (10)0.0015 (11)
C20.100 (2)0.0721 (16)0.0926 (18)0.0146 (15)0.0101 (16)0.0039 (13)
C30.155 (3)0.0725 (18)0.0831 (17)0.0202 (19)0.0097 (19)0.0148 (14)
C40.104 (2)0.104 (2)0.0931 (19)0.0421 (18)0.0178 (17)0.0127 (17)
C50.0534 (12)0.0935 (17)0.0683 (13)0.0153 (11)0.0051 (10)0.0037 (11)
C60.0447 (10)0.0672 (12)0.0439 (9)0.0074 (8)0.0039 (8)0.0024 (9)
C70.0418 (9)0.0558 (11)0.0548 (10)0.0054 (8)0.0075 (8)0.0002 (8)
C80.0805 (14)0.0537 (12)0.0584 (11)0.0013 (10)0.0158 (10)0.0102 (9)
C90.0783 (14)0.0533 (11)0.0588 (11)0.0104 (9)0.0140 (10)0.0079 (9)
C100.0766 (16)0.143 (3)0.0841 (16)0.0364 (16)0.0015 (13)0.0155 (16)
C110.166 (3)0.0535 (14)0.0977 (18)0.0177 (15)0.0502 (18)0.0045 (13)
C120.0598 (11)0.0496 (11)0.0607 (12)0.0051 (9)0.0084 (10)0.0096 (8)
C130.0865 (16)0.0604 (14)0.131 (2)0.0291 (12)0.0397 (16)0.0192 (14)
C140.115 (2)0.115 (2)0.0683 (15)0.0123 (17)0.0110 (15)0.0376 (14)
C150.0497 (10)0.0573 (11)0.0649 (12)0.0009 (8)0.0024 (9)0.0088 (9)
N10.0591 (9)0.0514 (9)0.0496 (9)0.0055 (7)0.0112 (7)0.0012 (7)
O10.0637 (10)0.1015 (12)0.0813 (11)0.0043 (8)0.0285 (8)0.0141 (9)
O20.0679 (10)0.0908 (11)0.0597 (9)0.0141 (7)0.0041 (7)0.0142 (7)
O30.0489 (7)0.0706 (9)0.0664 (8)0.0109 (6)0.0123 (6)0.0044 (7)
O40.0828 (10)0.0757 (10)0.0698 (9)0.0062 (8)0.0327 (8)0.0058 (7)
S10.0480 (3)0.0716 (4)0.0504 (3)0.0032 (2)0.0097 (2)0.0073 (2)
Geometric parameters (Å, º) top
C1—C21.366 (3)C10—H10A0.9600
C1—C61.374 (3)C10—H10B0.9600
C1—H10.9300C10—H10C0.9600
C2—C31.372 (4)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.361 (4)C11—H11C0.9600
C3—H30.9300C12—N11.489 (3)
C4—C51.369 (4)C12—C151.526 (3)
C4—H40.9300C12—C141.527 (3)
C5—C61.380 (3)C12—C131.530 (3)
C5—H50.9300C13—H13A0.9600
C6—S11.755 (2)C13—H13B0.9600
C7—O31.474 (2)C13—H13C0.9600
C7—C151.499 (3)C14—H14A0.9600
C7—C81.501 (3)C14—H14B0.9600
C7—H70.9800C14—H14C0.9600
C8—C91.524 (3)C15—H15A0.9700
C8—H8A0.9700C15—H15B0.9700
C8—H8B0.9700N1—O41.2816 (18)
C9—N11.493 (2)O1—S11.4224 (15)
C9—C111.526 (3)O2—S11.4208 (15)
C9—C101.528 (3)O3—S11.5649 (15)
C2—C1—C6119.0 (2)H10B—C10—H10C109.5
C2—C1—H1120.5C9—C11—H11A109.5
C6—C1—H1120.5C9—C11—H11B109.5
C1—C2—C3120.4 (3)H11A—C11—H11B109.5
C1—C2—H2119.8C9—C11—H11C109.5
C3—C2—H2119.8H11A—C11—H11C109.5
C4—C3—C2120.0 (3)H11B—C11—H11C109.5
C4—C3—H3120.0N1—C12—C15109.92 (14)
C2—C3—H3120.0N1—C12—C14106.79 (18)
C3—C4—C5121.0 (3)C15—C12—C14109.32 (18)
C3—C4—H4119.5N1—C12—C13109.13 (18)
C5—C4—H4119.5C15—C12—C13111.43 (17)
C4—C5—C6118.4 (2)C14—C12—C13110.1 (2)
C4—C5—H5120.8C12—C13—H13A109.5
C6—C5—H5120.8C12—C13—H13B109.5
C1—C6—C5121.2 (2)H13A—C13—H13B109.5
C1—C6—S1120.15 (15)C12—C13—H13C109.5
C5—C6—S1118.59 (16)H13A—C13—H13C109.5
O3—C7—C15108.97 (14)H13B—C13—H13C109.5
O3—C7—C8106.40 (14)C12—C14—H14A109.5
C15—C7—C8109.17 (16)C12—C14—H14B109.5
O3—C7—H7110.7H14A—C14—H14B109.5
C15—C7—H7110.7C12—C14—H14C109.5
C8—C7—H7110.7H14A—C14—H14C109.5
C7—C8—C9112.86 (16)H14B—C14—H14C109.5
C7—C8—H8A109.0C7—C15—C12112.79 (15)
C9—C8—H8A109.0C7—C15—H15A109.0
C7—C8—H8B109.0C12—C15—H15A109.0
C9—C8—H8B109.0C7—C15—H15B109.0
H8A—C8—H8B107.8C12—C15—H15B109.0
N1—C9—C8110.11 (15)H15A—C15—H15B107.8
N1—C9—C11107.53 (17)O4—N1—C12116.06 (15)
C8—C9—C11109.32 (18)O4—N1—C9115.77 (15)
N1—C9—C10108.80 (18)C12—N1—C9125.03 (14)
C8—C9—C10111.23 (18)C7—O3—S1119.15 (11)
C11—C9—C10109.8 (2)O2—S1—O1119.25 (10)
C9—C10—H10A109.5O2—S1—O3109.72 (8)
C9—C10—H10B109.5O1—S1—O3103.74 (9)
H10A—C10—H10B109.5O2—S1—C6109.01 (9)
C9—C10—H10C109.5O1—S1—C6109.91 (9)
H10A—C10—H10C109.5O3—S1—C6104.09 (8)
C6—C1—C2—C31.0 (4)C15—C12—N1—C931.7 (2)
C1—C2—C3—C40.2 (4)C14—C12—N1—C9150.2 (2)
C2—C3—C4—C50.9 (5)C13—C12—N1—C990.8 (2)
C3—C4—C5—C61.1 (4)C8—C9—N1—O4169.51 (16)
C2—C1—C6—C50.8 (3)C11—C9—N1—O450.5 (2)
C2—C1—C6—S1176.32 (17)C10—C9—N1—O468.4 (2)
C4—C5—C6—C10.2 (3)C8—C9—N1—C1231.4 (3)
C4—C5—C6—S1177.38 (19)C11—C9—N1—C12150.4 (2)
O3—C7—C8—C9179.29 (16)C10—C9—N1—C1290.8 (2)
C15—C7—C8—C961.8 (2)C15—C7—O3—S1111.29 (15)
C7—C8—C9—N144.5 (2)C8—C7—O3—S1131.12 (14)
C7—C8—C9—C11162.4 (2)C7—O3—S1—O246.29 (15)
C7—C8—C9—C1076.2 (2)C7—O3—S1—O1174.75 (13)
O3—C7—C15—C12178.12 (14)C7—O3—S1—C670.24 (14)
C8—C7—C15—C1262.3 (2)C1—C6—S1—O220.85 (19)
N1—C12—C15—C745.3 (2)C5—C6—S1—O2161.97 (15)
C14—C12—C15—C7162.21 (19)C1—C6—S1—O1153.26 (16)
C13—C12—C15—C775.8 (2)C5—C6—S1—O129.6 (2)
C15—C12—N1—O4169.22 (15)C1—C6—S1—O396.18 (17)
C14—C12—N1—O450.7 (2)C5—C6—S1—O381.01 (17)
C13—C12—N1—O468.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.583.337 (3)139
C15—H15B···O4ii0.972.463.351 (2)153
C1—H1···O20.932.602.948 (3)103
C7—H7···O20.982.542.949 (2)105
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H22NO4S
Mr312.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)11.4827 (9), 15.6864 (13), 18.4671 (14)
V3)3326.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18434, 3629, 2525
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.06
No. of reflections3629
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C21.366 (3)C12—C151.526 (3)
C1—C61.374 (3)C12—C141.527 (3)
C2—C31.372 (4)C12—C131.530 (3)
C6—S11.755 (2)N1—O41.2816 (18)
C7—O31.474 (2)O1—S11.4224 (15)
C7—C151.499 (3)O2—S11.4208 (15)
C12—N11.489 (3)O3—S11.5649 (15)
O3—C7—C15108.97 (14)O4—N1—C9115.77 (15)
N1—C9—C8110.11 (15)C12—N1—C9125.03 (14)
N1—C12—C15109.92 (14)O3—S1—C6104.09 (8)
O4—N1—C12116.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.583.337 (3)139
C15—H15B···O4ii0.972.463.351 (2)153
C1—H1···O20.932.602.948 (3)103
C7—H7···O20.982.542.949 (2)105
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds