Download citation
Download citation
link to html
In the title complex {alternative name: (2,2′-bipyridine-κ2N,N′)[3-(4-hydroxyphenyl)-2-(3-methoxy-2-oxidobenzylideneamino)propionato-κ3O,N,O′]oxovanadium(IV) methanol solvate monohydrate}, [V(C17H15NO5)O(C10H8N2)]·CH4O·H2O, the VIV atom is six-coordinated by three O atoms and three N atoms in a distorted octa­hedral configuration. In the crystal structure, the combination of intermolecular hydrogen-bonding (O—H...O) and π-stacking interactions creates a three-dimensional framework structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029855/lh6492sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029855/lh6492Isup2.hkl
Contains datablock I

CCDC reference: 287622

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.060
  • wR factor = 0.198
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.77 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The significant role of vanadium in a variety of chemical and biological systems has stimulated the development of vanadium chemistry (Hirao, 1997). Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. In addition to this natural relevance, a large variety of biological activities of small vanadium complexes, including enzyme inhibitory, antitumor or insulin-mimetic activities, have been reported. Vanadium–amino acid complexes are receiving considerable attention. However, this type of complex is not stable in the absence of other coordination ligands. Efforts have been made to stabilize vanadium–amino acid complexes by using another ligand, such as a Schiff base of amino acids (Colpas et al., 1994; Gruning & Rehder, 2000; Xu et al., 2005). We report here the synthesis and crystal structure of a new oxovanadium(IV)–amino acid complex with a tridentate Schiff base ligand derived from the condensation of o-vanallin and tyrosine, and with 2,2'-bipyridine.

The molecular structure of the title complex, (I), is shown in Fig. 1. The VIV atom is six-coordinated with the bipyridine ligand almost perpendicular to the Schiff base chalating plane [dihedral angle 87.62 (11)°], while the phenol group plane makes a dihedral angle of 158.69 (14)° to the Schiff base plane. Selected bond distances are given in Table 1 and show that the V atom is in a distorted octahedral coordination environment with atoms N1 and N2 in the axial positions, and atoms O1, O4, O6 and N3 equatorial. The V atom lies 0.019 Å above the equatorial plane. The biypyridyl ligand is not planar, but rather the two pyridyl rings form an angle of 172.8 (3)° to each other.

In addition to the vanadium complex, the asymmetric unit also contains one molecule of solvated water and one molecule of methanol. All three molecules are involed in O—H···O hydrogen bonding, which links the molecules in a two-dimensional framework (Table 2). Furthermore, pairs of bipyridine ligands related by centers of symmetry have centroid–centroid separations of 3.688 (4) and 3.515 (4) Å (perpendicular distance 3.53 and 3.38 Å) for the N2/C18–C22 and N3/C23–C27 rings, respectively, indicating significant ππ interactions (Tong et al., 1999). The combination of the intermolecular hydrogen bonding and the π-stacking interactions create a three-dimensional framework structure (Fig. 2).

Experimental top

Tyrosine (2 mmol, 362 mg) and potassium hydroxide (2 mmol, 112 mg) were dissolved in methanol (10 ml) and added successively to a methanol solution of o-vanillin (2 mmol, 304 mg). The mixture became yellow immediately and was then stirred and refluxed for 2 h. A solution of vanadium sulfate hydrate (2 mmol, 451 mg) in water (4 ml) was added dropwise to the stirring mixture and further refluxed for 3 h. An ethanol solution of 2,2'-bipyridine (2 mmol, 312 mg) was dropped successively and refluxed for 3 h, obtaining a brown solution. It was filtered and held at room temperature for seven days, whereupon yellow crystals suitable for X-ray diffraction were obtained. The elemental analysis result was in agreement with the structure composition of (I).

Refinement top

Water H atoms were located in difference Fourier maps and during the refinement the O—H distances were restrained to 0.90 (2) Å with Uiso = 0.08 Å2 [please provide s.u. values for O8—H distances in Table 2]. All other H atoms were placed in geometrically calculated positions (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C), 1.5Ueq(Cmethyl) or 1.5Ueq(O). The maximum residual density peak in the final difference Fourier is 0.56 Å from H28B.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram (PLATON; Spek, 2003) of the title compound, with the hydrogen-bonded interactions shown as dashed lines.
(N-vanillylidenetyrosinato-κ3O,N,O')(2,2'-bipyridine-κ2N,N') oxovanadium(IV) methanol solvate hydrate top
Crystal data top
C27H23N3O6V·CH4O·H2OF(000) = 1220
Mr = 586.48Dx = 1.429 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2406 reflections
a = 11.574 (3) Åθ = 2.3–23.5°
b = 20.210 (5) ŵ = 0.42 mm1
c = 14.919 (3) ÅT = 298 K
β = 128.638 (13)°Block, yellow
V = 2725.8 (11) Å30.53 × 0.37 × 0.24 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
4796 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.808, Tmax = 0.906k = 2323
14191 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0999P)2 + 2.8698P]
where P = (Fo2 + 2Fc2)/3
4796 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C27H23N3O6V·CH4O·H2OV = 2725.8 (11) Å3
Mr = 586.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.574 (3) ŵ = 0.42 mm1
b = 20.210 (5) ÅT = 298 K
c = 14.919 (3) Å0.53 × 0.37 × 0.24 mm
β = 128.638 (13)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4796 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2831 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.906Rint = 0.061
14191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.01Δρmax = 1.03 e Å3
4796 reflectionsΔρmin = 0.37 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.53446 (8)0.95911 (4)0.72169 (6)0.0311 (3)
O10.3858 (3)1.02760 (15)0.6847 (3)0.0405 (8)
O20.1539 (4)1.06097 (17)0.5520 (3)0.0520 (10)
O30.0381 (5)0.6937 (2)0.2552 (4)0.0839 (14)
H30.04410.68380.23430.126*
O40.6369 (3)0.87374 (14)0.7731 (3)0.0358 (8)
O50.8297 (4)0.78151 (17)0.9018 (3)0.0509 (10)
O60.5683 (4)0.98178 (18)0.6385 (3)0.0476 (9)
O70.7835 (5)0.6428 (3)0.1788 (4)0.0840 (15)
H70.75170.62540.20920.126*
O80.1019 (5)0.5801 (3)0.1831 (4)0.0982 (17)
H290.04420.60500.19280.080*
H300.02720.56500.11280.080*
N10.3411 (4)0.90827 (18)0.6146 (3)0.0301 (9)
N20.7214 (4)1.01317 (19)0.8627 (3)0.0363 (9)
N30.5495 (4)0.94182 (19)0.8825 (3)0.0375 (10)
C10.2512 (5)1.0191 (2)0.5929 (4)0.0375 (11)
C20.2148 (5)0.9519 (2)0.5354 (4)0.0347 (11)
H20.12680.93410.52250.042*
C30.1861 (6)0.9557 (2)0.4202 (4)0.0432 (12)
H3A0.10830.98760.37080.052*
H3B0.27500.97060.43300.052*
C40.1415 (6)0.8895 (3)0.3629 (4)0.0437 (13)
C50.0037 (6)0.8632 (3)0.3158 (4)0.0528 (14)
H50.06560.89020.31000.063*
C60.0355 (7)0.7998 (3)0.2775 (5)0.0642 (17)
H60.12870.78370.24700.077*
C70.0653 (7)0.7609 (3)0.2849 (5)0.0549 (15)
C80.2017 (7)0.7830 (3)0.3267 (5)0.0586 (16)
H80.26720.75520.32860.070*
C90.2428 (7)0.8496 (3)0.3676 (5)0.0546 (15)
H90.33540.86590.39660.066*
C100.3210 (5)0.8456 (2)0.6120 (4)0.0342 (11)
H100.22430.83030.56010.041*
C110.4326 (5)0.7974 (2)0.6810 (4)0.0337 (11)
C120.5852 (5)0.8136 (2)0.7596 (4)0.0310 (10)
C130.6859 (5)0.7616 (2)0.8258 (4)0.0346 (11)
C140.6386 (6)0.6975 (2)0.8120 (4)0.0423 (12)
H140.70710.66410.85610.051*
C150.4886 (6)0.6819 (3)0.7324 (5)0.0489 (14)
H150.45730.63820.72250.059*
C160.3884 (6)0.7312 (2)0.6692 (4)0.0440 (13)
H160.28840.72070.61710.053*
C170.9292 (6)0.7370 (3)0.9916 (5)0.0616 (17)
H17A1.02650.75591.03930.092*
H17B0.93080.69610.95960.092*
H17C0.89760.72881.03670.092*
C180.8042 (5)1.0491 (3)0.8468 (5)0.0470 (13)
H180.78251.04770.77540.056*
C190.9190 (6)1.0879 (3)0.9303 (5)0.0587 (16)
H190.97301.11270.91550.070*
C200.9532 (7)1.0896 (3)1.0364 (6)0.0688 (18)
H201.03051.11591.09440.083*
C210.8718 (6)1.0520 (3)1.0561 (5)0.0598 (16)
H210.89431.05201.12790.072*
C220.7554 (5)1.0140 (2)0.9671 (4)0.0410 (12)
C230.6645 (5)0.9710 (2)0.9802 (4)0.0371 (11)
C240.6921 (6)0.9601 (3)1.0839 (4)0.0523 (14)
H240.77000.98171.14990.063*
C250.6045 (6)0.9175 (3)1.0884 (5)0.0555 (15)
H250.62350.90891.15780.054 (16)*
C260.4883 (7)0.8878 (3)0.9896 (5)0.0549 (15)
H260.42680.85880.99060.066*
C270.4636 (6)0.9015 (3)0.8884 (5)0.0470 (13)
H270.38340.88160.82130.056*
C280.6716 (9)0.6464 (5)0.0614 (6)0.114 (3)
H28A0.71220.63920.02240.171*
H28B0.62640.68930.04190.171*
H28C0.59870.61310.03850.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0348 (5)0.0227 (4)0.0315 (4)0.0020 (3)0.0186 (4)0.0009 (3)
O10.0402 (19)0.0281 (19)0.0344 (18)0.0007 (15)0.0141 (16)0.0058 (14)
O20.046 (2)0.031 (2)0.057 (2)0.0101 (17)0.0217 (19)0.0014 (17)
O30.102 (4)0.052 (3)0.098 (3)0.018 (3)0.062 (3)0.023 (3)
O40.0354 (18)0.0234 (18)0.0458 (19)0.0024 (14)0.0240 (16)0.0011 (14)
O50.0339 (19)0.040 (2)0.055 (2)0.0055 (16)0.0163 (18)0.0097 (18)
O60.058 (2)0.046 (2)0.044 (2)0.0110 (18)0.0344 (18)0.0009 (17)
O70.082 (3)0.109 (4)0.076 (3)0.026 (3)0.056 (3)0.014 (3)
O80.074 (3)0.122 (5)0.080 (3)0.007 (3)0.039 (3)0.024 (3)
N10.034 (2)0.023 (2)0.028 (2)0.0005 (16)0.0167 (17)0.0009 (16)
N20.041 (2)0.025 (2)0.041 (2)0.0009 (18)0.0239 (19)0.0029 (18)
N30.042 (2)0.032 (2)0.032 (2)0.0008 (18)0.021 (2)0.0015 (18)
C10.044 (3)0.024 (3)0.039 (3)0.004 (2)0.023 (3)0.002 (2)
C20.034 (2)0.024 (3)0.035 (3)0.001 (2)0.016 (2)0.001 (2)
C30.051 (3)0.034 (3)0.036 (3)0.002 (2)0.023 (2)0.004 (2)
C40.056 (3)0.036 (3)0.033 (3)0.000 (3)0.025 (3)0.001 (2)
C50.053 (3)0.043 (3)0.042 (3)0.006 (3)0.020 (3)0.006 (3)
C60.060 (4)0.059 (4)0.053 (4)0.008 (3)0.026 (3)0.009 (3)
C70.065 (4)0.054 (4)0.043 (3)0.014 (3)0.032 (3)0.018 (3)
C80.062 (4)0.060 (4)0.057 (4)0.010 (3)0.039 (3)0.003 (3)
C90.070 (4)0.050 (4)0.047 (3)0.002 (3)0.038 (3)0.002 (3)
C100.033 (2)0.030 (3)0.033 (3)0.002 (2)0.017 (2)0.002 (2)
C110.038 (3)0.024 (3)0.036 (3)0.001 (2)0.022 (2)0.001 (2)
C120.037 (2)0.024 (2)0.031 (2)0.001 (2)0.020 (2)0.0008 (19)
C130.035 (3)0.030 (3)0.034 (3)0.002 (2)0.019 (2)0.004 (2)
C140.049 (3)0.027 (3)0.047 (3)0.010 (2)0.029 (3)0.012 (2)
C150.051 (3)0.023 (3)0.063 (4)0.000 (2)0.031 (3)0.003 (2)
C160.039 (3)0.030 (3)0.050 (3)0.003 (2)0.022 (3)0.001 (2)
C170.041 (3)0.058 (4)0.054 (3)0.005 (3)0.015 (3)0.012 (3)
C180.043 (3)0.040 (3)0.050 (3)0.010 (2)0.025 (3)0.004 (3)
C190.051 (3)0.045 (4)0.072 (4)0.016 (3)0.035 (3)0.008 (3)
C200.048 (4)0.054 (4)0.073 (5)0.021 (3)0.023 (3)0.019 (3)
C210.055 (4)0.057 (4)0.043 (3)0.012 (3)0.018 (3)0.013 (3)
C220.038 (3)0.033 (3)0.037 (3)0.003 (2)0.016 (2)0.002 (2)
C230.039 (3)0.036 (3)0.030 (3)0.006 (2)0.019 (2)0.000 (2)
C240.054 (3)0.054 (4)0.032 (3)0.002 (3)0.018 (3)0.001 (3)
C250.064 (4)0.064 (4)0.039 (3)0.011 (3)0.033 (3)0.015 (3)
C260.065 (4)0.053 (4)0.064 (4)0.002 (3)0.049 (3)0.003 (3)
C270.052 (3)0.044 (3)0.051 (3)0.003 (3)0.035 (3)0.007 (3)
C280.110 (6)0.161 (9)0.074 (6)0.053 (6)0.059 (5)0.007 (5)
Geometric parameters (Å, º) top
V1—O61.584 (3)C8—H80.9300
V1—O41.958 (3)C9—H90.9300
V1—O11.999 (3)C10—C111.420 (6)
V1—N12.037 (4)C10—H100.9300
V1—N22.149 (4)C11—C161.404 (6)
V1—N32.321 (4)C11—C121.420 (6)
O1—C11.291 (6)C12—C131.415 (6)
O2—C11.223 (6)C13—C141.370 (7)
O3—C71.402 (7)C14—C151.396 (7)
O3—H30.8200C14—H140.9300
O4—C121.313 (5)C15—C161.365 (7)
O5—C131.364 (5)C15—H150.9300
O5—C171.415 (6)C16—H160.9300
O7—C281.384 (8)C17—H17A0.9600
O7—H70.8200C17—H17B0.9600
O8—H290.9170C17—H17C0.9600
O8—H300.8990C18—C191.365 (7)
N1—C101.285 (6)C18—H180.9300
N1—C21.468 (5)C19—C201.372 (9)
N2—C181.336 (6)C19—H190.9300
N2—C221.348 (6)C20—C211.378 (9)
N3—C271.331 (6)C20—H200.9300
N3—C231.349 (6)C21—C221.390 (7)
C1—C21.519 (6)C21—H210.9300
C2—C31.534 (6)C22—C231.470 (7)
C2—H20.9800C23—C241.387 (7)
C3—C41.495 (7)C24—C251.364 (8)
C3—H3A0.9700C24—H240.9300
C3—H3B0.9700C25—C261.367 (8)
C4—C51.386 (7)C25—H250.9300
C4—C91.389 (7)C26—C271.378 (7)
C5—C61.360 (8)C26—H260.9300
C5—H50.9300C27—H270.9300
C6—C71.352 (8)C28—H28A0.9600
C6—H60.9300C28—H28B0.9600
C7—C81.360 (8)C28—H28C0.9600
C8—C91.432 (8)
O6—V1—O4100.14 (17)N1—C10—C11126.0 (4)
O6—V1—O1100.05 (17)N1—C10—H10117.0
O4—V1—O1157.62 (14)C11—C10—H10117.0
O6—V1—N1102.66 (16)C16—C11—C12119.5 (4)
O4—V1—N187.87 (14)C16—C11—C10117.8 (4)
O1—V1—N178.35 (14)C12—C11—C10122.7 (4)
O6—V1—N291.69 (17)O4—C12—C13118.9 (4)
O4—V1—N294.09 (14)O4—C12—C11123.6 (4)
O1—V1—N294.89 (14)C13—C12—C11117.5 (4)
N1—V1—N2164.96 (15)O5—C13—C14124.7 (4)
O6—V1—N3163.24 (17)O5—C13—C12113.9 (4)
O4—V1—N380.01 (14)C14—C13—C12121.4 (4)
O1—V1—N383.44 (14)C13—C14—C15120.6 (4)
N1—V1—N394.10 (15)C13—C14—H14119.7
N2—V1—N371.63 (15)C15—C14—H14119.7
C1—O1—V1117.5 (3)C16—C15—C14119.4 (5)
C7—O3—H3109.5C16—C15—H15120.3
C12—O4—V1130.4 (3)C14—C15—H15120.3
C13—O5—C17116.6 (4)C15—C16—C11121.5 (5)
C28—O7—H7109.5C15—C16—H16119.2
H29—O8—H3096.1C11—C16—H16119.2
C10—N1—C2119.8 (4)O5—C17—H17A109.5
C10—N1—V1127.6 (3)O5—C17—H17B109.5
C2—N1—V1112.5 (3)H17A—C17—H17B109.5
C18—N2—C22118.3 (4)O5—C17—H17C109.5
C18—N2—V1119.9 (3)H17A—C17—H17C109.5
C22—N2—V1121.8 (3)H17B—C17—H17C109.5
C27—N3—C23118.0 (4)N2—C18—C19123.2 (5)
C27—N3—V1125.7 (3)N2—C18—H18118.4
C23—N3—V1116.0 (3)C19—C18—H18118.4
O2—C1—O1124.3 (4)C18—C19—C20118.9 (6)
O2—C1—C2119.5 (4)C18—C19—H19120.6
O1—C1—C2116.3 (4)C20—C19—H19120.6
N1—C2—C1107.3 (4)C19—C20—C21119.3 (6)
N1—C2—C3110.0 (4)C19—C20—H20120.4
C1—C2—C3112.2 (4)C21—C20—H20120.4
N1—C2—H2109.1C20—C21—C22119.0 (6)
C1—C2—H2109.1C20—C21—H21120.5
C3—C2—H2109.1C22—C21—H21120.5
C4—C3—C2110.6 (4)N2—C22—C21121.4 (5)
C4—C3—H3A109.5N2—C22—C23115.4 (4)
C2—C3—H3A109.5C21—C22—C23123.2 (5)
C4—C3—H3B109.5N3—C23—C24121.4 (5)
C2—C3—H3B109.5N3—C23—C22114.8 (4)
H3A—C3—H3B108.1C24—C23—C22123.8 (5)
C5—C4—C9118.0 (5)C25—C24—C23119.6 (5)
C5—C4—C3120.8 (5)C25—C24—H24120.2
C9—C4—C3120.8 (5)C23—C24—H24120.2
C6—C5—C4123.5 (6)C24—C25—C26119.0 (5)
C6—C5—H5118.3C24—C25—H25120.5
C4—C5—H5118.3C26—C25—H25120.5
C7—C6—C5118.0 (6)C25—C26—C27119.0 (5)
C7—C6—H6121.0C25—C26—H26120.5
C5—C6—H6121.0C27—C26—H26120.5
C6—C7—C8122.8 (6)N3—C27—C26122.9 (5)
C6—C7—O3121.7 (6)N3—C27—H27118.5
C8—C7—O3115.4 (6)C26—C27—H27118.5
C7—C8—C9119.1 (6)O7—C28—H28A109.5
C7—C8—H8120.5O7—C28—H28B109.5
C9—C8—H8120.5H28A—C28—H28B109.5
C4—C9—C8118.6 (6)O7—C28—H28C109.5
C4—C9—H9120.7H28A—C28—H28C109.5
C8—C9—H9120.7H28B—C28—H28C109.5
C4—C5—C6—C70.7 (9)C6—C7—C8—C91.8 (9)
C5—C6—C7—C81.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H30···O2i0.902.002.872 (6)162
O8—H29···O30.922.042.821 (7)142
O7—H7···O4ii0.822.062.819 (5)153
O3—H3···O7iii0.821.812.617 (6)166
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H23N3O6V·CH4O·H2O
Mr586.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.574 (3), 20.210 (5), 14.919 (3)
β (°) 128.638 (13)
V3)2725.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.53 × 0.37 × 0.24
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.808, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
14191, 4796, 2831
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.198, 1.01
No. of reflections4796
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
V1—O61.584 (3)V1—N12.037 (4)
V1—O41.958 (3)V1—N22.149 (4)
V1—O11.999 (3)V1—N32.321 (4)
O6—V1—O4100.14 (17)O1—V1—N294.89 (14)
O6—V1—O1100.05 (17)N1—V1—N2164.96 (15)
O4—V1—O1157.62 (14)O6—V1—N3163.24 (17)
O6—V1—N1102.66 (16)O4—V1—N380.01 (14)
O4—V1—N187.87 (14)O1—V1—N383.44 (14)
O1—V1—N178.35 (14)N1—V1—N394.10 (15)
O6—V1—N291.69 (17)N2—V1—N371.63 (15)
O4—V1—N294.09 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H30···O2i0.902.002.872 (6)162.4
O8—H29···O30.922.042.821 (7)142.2
O7—H7···O4ii0.822.062.819 (5)153.1
O3—H3···O7iii0.821.812.617 (6)165.8
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds