Download citation
Download citation
link to html
The cation and anion of the title compound, (C7H10N)2[Mn(SO4)2(H2O)4], are linked by hydrogen bonds into a three-dimensional network structure. The Mn atom of the anion lies on a centre of inversion in an octa­hedral coordination geometry of water and sulfate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028370/lh6494sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028370/lh6494Isup2.hkl
Contains datablock I

CCDC reference: 287624

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.103
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.631 0.791 Tmin(prime) and Tmax expected: 0.777 0.782 RR(prime) = 0.803 Please check that your absorption correction is appropriate. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.80 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - O2W .. 6.25 su PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.02 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 7 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat O2W -H2W1 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Rat O2W -H3# 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H10 N
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C14 H28 Mn1 N2 O12 S2 Atom count from _chemical_formula_moiety:C14 H20 N2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The Tutton salts MI2[MII(H2O)6](SO4)2, where MI is a monovalent metal or ammonium and MII is a divalent transition metal, are well studied class of salts (Mahadevan Pillai et al., 1997) that typically afford large well defined crystals. Such salts have been reported to undergo multiple phase transitions, and some of the phases also exhibit ferroelectricity/ferroelasticity (Kirpichnikova et al., 1990; Vlokh, Bublyk et al., 1991; Vlokh, Karpustyanyuk et al., 1991). Interest in the double alkylammoniummetal sulfates arises from the information that can be obtained on the structural features of the ammonium ion (Naumov et al., 2002).

Di(benzylammonium) tetraaquadisulfatomanganate, (I), is a member of the triad of double sulfates which has cadmium and copper salts as the other members (Jordanovska et al., 2000). The formulation of the compound (Fig. 1) was established previously.

In the crystal structure, the Mn atom lies on a centre of inversion, and the octahedrally coordinated anion interacts with the cation through hydrogen bonds (Table 2) to give rise to a tightly held three-dimensional network structure.

Two other tetraaquadisulfatomanganate salts that have been crystallographically authenticated are the ethylenediammonium (Chaabouni et al., 1996) and histiminium (Wojtczak & Jaskólski, 1989) salts.

Experimental top

The compound could be synthesized on a large scale, as it exists as colourless crystalline blocks of centimetre dimensions by merely evaporating, at ambient temperature, an aqueous solution of a molar quantity of manganese(II) sulfate and two molar quantities of benzylammonium sulfate in the presence of sulfuric acid (Jordanovska et al., 2000). The crystal of (I) used for the present diffraction measurements was cut from a large specimen.

Refinement top

C-bound H atoms were generated geometrically [C—Hphenyl = 0.93 Å and C—Hmethylene = 0.97 Å; Uiso(H) = 1.2UeqC] and were included in the refinement in the riding-model approximation. Ammonium and water H atoms were found in difference Fourier maps and refined with a distance restraint of N—H = O—H = 0.85 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: difference Fourier, with Mn1 at (1/2,1/2,1/2); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot of (I), showing displacement ellipsoids at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii. [Symmetry code: (i) 1 − x, 1 − y 1 − z.]
Bis(benzylaminium) tetraaquadisulfatomanganate(II) top
Crystal data top
(C7H10N)2[Mn(SO4)2(H2O)4]Z = 1
Mr = 535.44F(000) = 279
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5934 (4) ÅCell parameters from 2764 reflections
b = 8.0307 (5) Åθ = 2.6–28.3°
c = 11.2873 (8) ŵ = 0.82 mm1
α = 80.620 (1)°T = 295 K
β = 82.639 (1)°Irregular block, colourless
γ = 77.613 (1)°0.30 × 0.30 × 0.30 mm
V = 573.24 (6) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2533 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.631, Tmax = 0.791k = 910
3583 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1241P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.34 e Å3
7 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C7H10N)2[Mn(SO4)2(H2O)4]γ = 77.613 (1)°
Mr = 535.44V = 573.24 (6) Å3
Triclinic, P1Z = 1
a = 6.5934 (4) ÅMo Kα radiation
b = 8.0307 (5) ŵ = 0.82 mm1
c = 11.2873 (8) ÅT = 295 K
α = 80.620 (1)°0.30 × 0.30 × 0.30 mm
β = 82.639 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2371 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.791Rint = 0.017
3583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0337 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.34 e Å3
2533 reflectionsΔρmin = 0.44 e Å3
170 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0268 (1)
S10.76209 (6)0.77318 (5)0.60325 (4)0.02796 (14)
O10.6080 (2)0.6616 (2)0.6113 (1)0.0336 (3)
O20.8591 (2)0.7975 (2)0.4763 (1)0.0387 (3)
O30.9264 (2)0.6918 (2)0.6825 (1)0.0393 (3)
O40.6561 (2)0.9388 (2)0.6393 (2)0.0490 (4)
O1W0.7127 (2)0.2697 (2)0.5669 (2)0.0436 (3)
O2W0.7402 (2)0.5661 (2)0.3582 (1)0.0402 (3)
N10.7835 (2)1.1000 (2)0.3107 (1)0.0343 (3)
C10.8195 (5)1.0192 (3)0.1990 (2)0.0579 (6)
C20.7765 (4)1.1479 (3)0.0887 (2)0.0462 (5)
C30.5881 (5)1.1732 (4)0.0408 (2)0.0685 (7)
C40.5510 (6)1.2864 (4)0.0636 (3)0.0832 (9)
C50.6980 (6)1.3766 (3)0.1193 (2)0.0764 (9)
C60.8841 (5)1.3559 (3)0.0713 (2)0.0697 (8)
C70.9243 (4)1.2418 (3)0.0325 (2)0.0568 (6)
H1W10.844 (2)0.248 (3)0.555 (2)0.057 (7)*
H1W20.685 (4)0.171 (2)0.589 (2)0.062 (8)*
H2W10.801 (4)0.632 (3)0.387 (2)0.066 (8)*
H2W20.848 (3)0.491 (3)0.345 (2)0.058 (8)*
H1N10.802 (4)1.025 (2)0.374 (1)0.044 (6)*
H1N20.657 (2)1.155 (3)0.313 (2)0.056 (7)*
H1N30.867 (3)1.168 (2)0.314 (2)0.040 (6)*
H1A0.73040.93570.20610.069*
H1B0.96320.95810.19000.069*
H30.48581.11380.07900.082*
H40.42471.30120.09620.100*
H50.67211.45220.18990.092*
H60.98351.41890.10870.084*
H71.05071.22800.06480.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0238 (2)0.0233 (2)0.0336 (2)0.0069 (1)0.0028 (1)0.0025 (1)
S10.0242 (2)0.0238 (2)0.0365 (2)0.0084 (2)0.0045 (2)0.0002 (2)
O10.0325 (6)0.0357 (6)0.0367 (6)0.0180 (5)0.0024 (5)0.0033 (5)
O20.0339 (6)0.0416 (7)0.0393 (7)0.0147 (5)0.0017 (5)0.0059 (5)
O30.0325 (7)0.0428 (7)0.0432 (7)0.0086 (5)0.0129 (5)0.0007 (6)
O40.0452 (8)0.0276 (6)0.0735 (10)0.0078 (6)0.0011 (7)0.0097 (6)
O1W0.0287 (7)0.0292 (6)0.0685 (9)0.0052 (5)0.0081 (6)0.0080 (6)
O2W0.0363 (7)0.0399 (7)0.0439 (7)0.0118 (6)0.0040 (6)0.0048 (6)
N10.0333 (8)0.0358 (8)0.0333 (7)0.0083 (6)0.0048 (6)0.0001 (6)
C10.100 (2)0.032 (1)0.040 (1)0.008 (1)0.011 (1)0.004 (1)
C20.071 (1)0.036 (1)0.033 (1)0.013 (1)0.005 (1)0.005 (1)
C30.083 (2)0.069 (2)0.061 (2)0.035 (1)0.017 (1)0.003 (1)
C40.098 (2)0.082 (2)0.074 (2)0.019 (2)0.042 (2)0.005 (2)
C50.134 (3)0.052 (1)0.041 (1)0.015 (2)0.020 (2)0.005 (1)
C60.105 (2)0.057 (2)0.047 (1)0.029 (2)0.008 (1)0.002 (1)
C70.066 (2)0.059 (1)0.046 (1)0.018 (1)0.003 (1)0.005 (1)
Geometric parameters (Å, º) top
Mn1—O12.219 (1)C5—C61.372 (5)
Mn1—O1i2.219 (1)C6—C71.382 (3)
Mn1—O1W2.159 (1)O1W—H1W10.84 (1)
Mn1—O1Wi2.159 (1)O1W—H1W20.84 (1)
Mn1—O2W2.188 (1)O2W—H2W10.85 (1)
Mn1—O2Wi2.188 (1)O2W—H2W20.84 (1)
S1—O41.458 (1)N1—H1N10.86 (1)
S1—O31.468 (1)N1—H1N20.86 (1)
S1—O11.478 (1)N1—H1N30.86 (1)
S1—O21.493 (1)C1—H1A0.97
N1—C11.481 (3)C1—H1B0.97
C1—C21.498 (3)C3—H30.93
C2—C31.380 (4)C4—H40.93
C2—C71.386 (3)C5—H50.93
C3—C41.380 (4)C6—H60.93
C4—C51.362 (5)C7—H70.93
O1—Mn1—O1i180Mn1—O1W—H1W2127 (2)
O1—Mn1—O1W93.24 (5)H1W1—O1W—H1W2102 (3)
O1—Mn1—O1Wi86.76 (5)Mn1—O2W—H2W1105 (2)
O1—Mn1—O2W87.55 (5)Mn1—O2W—H2W2119 (2)
O1—Mn1—O2Wi92.45 (5)H2W1—O2W—H2W296 (3)
O1W—Mn1—O1Wi180C1—N1—H1N1112 (2)
O1W—Mn1—O2W90.30 (5)C1—N1—H1N2105 (2)
O1W—Mn1—O2Wi89.70 (5)H1N1—N1—H1N2111 (2)
O2W—Mn1—O2Wi180C1—N1—H1N3114 (2)
O4—S1—O3109.91 (9)H1N1—N1—H1N3105 (2)
O4—S1—O1108.97 (8)H1N2—N1—H1N3111 (2)
O3—S1—O1110.04 (8)N1—C1—H1A109.1
O4—S1—O2110.22 (8)C2—C1—H1A109.1
O3—S1—O2108.81 (8)N1—C1—H1B109.1
O1—S1—O2108.87 (7)C2—C1—H1B109.1
S1—O1—Mn1139.98 (8)H1A—C1—H1B107.8
N1—C1—C2112.6 (2)C2—C3—H3119.9
C3—C2—C7119.0 (2)C4—C3—H3119.9
C3—C2—C1120.0 (2)C5—C4—H4119.7
C7—C2—C1121.0 (2)C3—C4—H4119.7
C2—C3—C4120.2 (3)C4—C5—H5120.0
C5—C4—C3120.5 (3)C6—C5—H5120.0
C4—C5—C6120.0 (2)C5—C6—H6119.9
C5—C6—C7120.1 (3)C7—C6—H6119.9
C6—C7—C2120.1 (3)C6—C7—H7119.9
Mn1—O1W—H1W1128 (2)C2—C7—H7119.9
O4—S1—O1—Mn1128.5 (1)C7—C2—C3—C42.1 (4)
O3—S1—O1—Mn1111.0 (1)C1—C2—C3—C4177.3 (3)
O2—S1—O1—Mn18.2 (1)C2—C3—C4—C51.2 (5)
O1W—Mn1—O1—S192.1 (1)C3—C4—C5—C60.4 (5)
O1Wi—Mn1—O1—S187.9 (1)C4—C5—C6—C71.0 (5)
O2Wi—Mn1—O1—S1178.0 (1)C5—C6—C7—C20.1 (4)
O2W—Mn1—O1—S12.0 (1)C3—C2—C7—C61.4 (4)
N1—C1—C2—C398.6 (3)C1—C2—C7—C6177.9 (2)
N1—C1—C2—C782.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.84 (1)1.91 (1)2.754 (2)178 (3)
O1W—H1W2···O4iii0.84 (1)1.90 (1)2.740 (2)173 (3)
O2W—H2W1···O20.85 (1)1.92 (1)2.746 (2)164 (3)
O2W—H2W2···O3ii0.84 (1)1.89 (1)2.726 (2)175 (3)
N1—H1N1···O20.86 (1)1.99 (1)2.807 (2)160 (2)
N1—H1N2···O1iv0.86 (1)2.21 (2)2.991 (2)152 (2)
N1—H1N3···O3v0.86 (1)1.95 (1)2.813 (2)176 (2)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C7H10N)2[Mn(SO4)2(H2O)4]
Mr535.44
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.5934 (4), 8.0307 (5), 11.2873 (8)
α, β, γ (°)80.620 (1), 82.639 (1), 77.613 (1)
V3)573.24 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.631, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
3583, 2533, 2371
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.103, 1.10
No. of reflections2533
No. of parameters170
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, difference Fourier, with Mn1 at (1/2,1/2,1/2), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—O12.219 (1)Mn1—O2W2.188 (1)
Mn1—O1W2.159 (1)
O1—Mn1—O1W93.24 (5)O1—Mn1—O2Wi92.45 (5)
O1—Mn1—O1Wi86.76 (5)O1W—Mn1—O2W90.30 (5)
O1—Mn1—O2W87.55 (5)O1W—Mn1—O2Wi89.70 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.84 (1)1.91 (1)2.754 (2)178 (3)
O1W—H1W2···O4iii0.84 (1)1.90 (1)2.740 (2)173 (3)
O2W—H2W1···O20.85 (1)1.92 (1)2.746 (2)164 (3)
O2W—H2W2···O3ii0.84 (1)1.89 (1)2.726 (2)175 (3)
N1—H1N1···O20.86 (1)1.99 (1)2.807 (2)160 (2)
N1—H1N2···O1iv0.86 (1)2.21 (2)2.991 (2)152 (2)
N1—H1N3···O3v0.86 (1)1.95 (1)2.813 (2)176 (2)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds