Download citation
Download citation
link to html
In the centrosymmetric, mononuclear title complex, [Ni(L)2(H2O)4](ClO4)2·2C3H6O [L = 2,3-bis­(5-methyl-1,3,4-thia­diazol-2-ylsulfanyl­meth­yl)quinoxaline, C16H14N6S4], the NiII center adopts a slightly distorted octa­hedral coordination geometry, formed by two N atoms from two distinct ligands and four O atoms from water mol­ecules. Only one N atom of L takes part in coordinating to the NiII atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029892/lh6503sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029892/lh6503Isup2.hkl
Contains datablock I

CCDC reference: 287637

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.063
  • wR factor = 0.111
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C18 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S4 in Main Residue . ? PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 8 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C3 H6 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 Cl O4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The generation of coordination architectures depends mainly on the combination of two factors, viz. the coordination geometry of metal ions and the nature of the ligands (Sun et al., 2002; Goodgame et al., 2002; Hamblin et al., 2002). Multithioether ligands possess unusual potential for structure control in inorganic chemistry, and many crystal structures of complexes with multithioether ligands have been reported (Li et al., 2003; Zheng et al., 2003). The crystal structure of a nickel(II) complex, [Ni(L)2(H2O)4](ClO4)2·2CH3COCH3, (I), with a flexible dithioether ligand, namely 2,3-bis(5-methyl-1,3,4-thiadiazole-2-thiomethyl)quinoxaline (L), is reported here.

The molecular structure of the title complex consists of a mononuclear [Ni(L)2(H2O)4]2+ cation, two ClO4 anions and two uncoordinated CH3COCH3 molecules (Fig. 1). The [Ni(L)2(H2O)4]2+ cation is centrosymmetric, with the NiII atom residing on an inversion center. The NiII atom is coordinated by two N atoms from two distinct ligands (L) and four O atoms from water molecules, giving a slightly disorted octahedral coordination geometry with the cis bond angles around the NiII center in the range 88.16 (13) to 92.97 (12)°. As shown in Table 1, the Ni—N bond length is 2.129 (4) Å, while the Ni—O bond lengths are unequal with values for Ni1—O1 and Ni1—O2 of 2.089 (3) and 2.050 (3) Å, respectively. In the title complex, although each ligand has ten potential donors (six N and four S), only one N atom takes part in coordination to the NiII center. The dihedral angle formed by the two thiadiazole rings from the same ligand is 63.5 (3)°. In the crystal structure O—H···O and O—H···N intramolecular and intermolecular hydrogen bonds stablize the packing (see Table 2).

Experimental top

The reaction of 2,3-bis(bromomethyl)quinoxaline with the 5-methyl-2-sulfanyl-1,3,4-thiadiazole, in the presence of KOH, gaves the ligand L in good yields (84%). Analysis calculated for C16H14N6S4: C 45.91, H 3.37, N 20.08%; found: C 45.74, H 3.49, N 20.28%; 1H NMR (CDCl3): 2.72 (s, 6H, CH3), 5.10 (s, 4H, SCH2), 7.73–8.07 (m, 4H, Ar—H). The title complex was synthesized by carefully layering a solution of Ni(ClO4)2·6H2O (36.6 mg, 0.1 mmol) in CH3COCH3 on top of a solution of L (42.0 mg, 0.1 mmol) in chloroform in a test-tube. After about three days at room temperature, blue–green single crystals suitable for X-ray investigation appeared at the boundary between acetonitrile and chloroform with a yield of 22%. IR (KBr, cm−1): 3441(s), 1629 (w), 1571 (w), 1490 (m), 1339 (m), 1296 (m), 1133 (m), 1018 (m), 838 (vs), 770 (s), 556 (s).

Refinement top

H atoms bonded to C atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms] of the carrier atom. The H atoms of the water molecules were located in Fourier difference maps and refined independently with isotropic displacement parameters [these values have no s.u. values in the CIF or Table 2].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Structure of (I), showing displacement ellipsoids at the 30% probability level [symmetry code: (A) 2 − x, 1 − y, 1 − z]. The symmetry-related perchorate ion and acetone molecule are not shown.
Tetra-aqua-bis[2,3-bis(5-methyl-1,3,4-thiadiazole-2- thiomethyl)quinoxaline]-nickel(II) diperchlorate diacetone solvate top
Crystal data top
[Ni(C16H14N6S4)2(H2O)4](ClO4)2·2C3H6OZ = 1
Mr = 1282.97F(000) = 662
Triclinic, P1Dx = 1.548 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.300 (7) ÅCell parameters from 776 reflections
b = 12.223 (9) Åθ = 2.4–26.3°
c = 13.964 (10) ŵ = 0.82 mm1
α = 81.108 (13)°T = 293 K
β = 86.415 (12)°Needle, blue–green
γ = 79.596 (13)°0.20 × 0.16 × 0.12 mm
V = 1375.8 (18) Å3
Data collection top
Bruker Smart 1000 CCD area-detector
diffractometer
5461 independent reflections
Radiation source: fine-focus sealed tube3264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.789, Tmax = 0.910k = 715
7534 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0223P)2 + 1.5535P]
where P = (Fo2 + 2Fc2)/3
5461 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C16H14N6S4)2(H2O)4](ClO4)2·2C3H6Oγ = 79.596 (13)°
Mr = 1282.97V = 1375.8 (18) Å3
Triclinic, P1Z = 1
a = 8.300 (7) ÅMo Kα radiation
b = 12.223 (9) ŵ = 0.82 mm1
c = 13.964 (10) ÅT = 293 K
α = 81.108 (13)°0.20 × 0.16 × 0.12 mm
β = 86.415 (12)°
Data collection top
Bruker Smart 1000 CCD area-detector
diffractometer
5461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3264 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.910Rint = 0.034
7534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.85 e Å3
5461 reflectionsΔρmin = 0.58 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.0246 (2)
S10.45870 (16)0.66577 (11)0.43459 (9)0.0424 (3)
S20.37796 (16)0.70436 (12)0.64134 (10)0.0435 (4)
S30.70946 (16)1.01387 (10)0.54639 (9)0.0365 (3)
S40.87757 (16)1.03818 (10)0.34808 (9)0.0379 (3)
N10.7501 (4)0.5762 (3)0.4809 (2)0.0277 (9)
N20.6717 (5)0.6061 (3)0.5668 (3)0.0310 (9)
N30.4053 (5)0.8410 (3)0.8476 (3)0.0365 (10)
N40.5445 (5)1.0129 (3)0.7289 (3)0.0369 (10)
N50.8815 (5)0.8457 (3)0.4528 (3)0.0414 (11)
N60.9716 (5)0.8260 (3)0.3676 (3)0.0441 (11)
O10.9696 (4)0.3632 (2)0.4340 (2)0.0337 (8)
H111.01580.30380.47340.040*
H120.99930.35970.37390.040*
O21.0624 (4)0.5904 (2)0.3712 (2)0.0339 (8)
H211.14590.56700.33660.041*
H221.04410.66190.36780.041*
C10.7074 (6)0.5794 (4)0.3052 (3)0.0433 (13)
H1A0.74820.64320.26980.065*
H1B0.61510.56640.27310.065*
H1C0.79220.51430.30790.065*
C20.6556 (6)0.6018 (4)0.4063 (3)0.0292 (11)
C30.5189 (6)0.6543 (4)0.5532 (3)0.0307 (11)
C40.5117 (6)0.7052 (4)0.7418 (3)0.0384 (12)
H4A0.48330.65380.79780.046*
H4B0.62500.68000.72260.046*
C50.4921 (6)0.8221 (4)0.7680 (3)0.0316 (11)
C60.3832 (6)0.9486 (4)0.8708 (3)0.0381 (12)
C70.2877 (7)0.9739 (5)0.9554 (3)0.0488 (14)
H70.24050.91860.99460.059*
C80.2661 (7)1.0808 (5)0.9787 (4)0.0554 (16)
H80.20371.09761.03380.067*
C90.3370 (7)1.1649 (5)0.9204 (4)0.0562 (16)
H90.32161.23650.93800.067*
C100.4280 (7)1.1441 (4)0.8384 (4)0.0497 (15)
H100.47411.20080.80040.060*
C110.4516 (6)1.0350 (4)0.8118 (3)0.0372 (12)
C120.5650 (6)0.9098 (4)0.7078 (3)0.0332 (12)
C130.6703 (7)0.8842 (4)0.6200 (3)0.0403 (13)
H13A0.61580.84280.58190.048*
H13B0.77350.83760.64020.048*
C140.8251 (6)0.9529 (4)0.4522 (3)0.0302 (11)
C150.9808 (6)0.9170 (4)0.3070 (3)0.0343 (12)
C161.0737 (7)0.9190 (4)0.2119 (3)0.0513 (15)
H16A1.14530.97330.20670.077*
H16B0.99810.93900.16020.077*
H16C1.13730.84600.20770.077*
Cl10.0344 (2)1.31523 (13)1.16539 (9)0.0542 (4)
O30.0438 (10)1.2000 (5)1.1893 (5)0.181 (3)
O40.1460 (6)1.3370 (4)1.0885 (3)0.0976 (17)
O50.0825 (6)1.3609 (5)1.2461 (3)0.1063 (19)
O60.1246 (6)1.3711 (5)1.1417 (4)0.123 (2)
C170.3806 (9)0.6026 (7)1.0585 (5)0.113 (3)
H17A0.35990.66791.01010.170*
H17B0.37020.53711.03090.170*
H17C0.48950.59451.08120.170*
C180.2605 (8)0.6154 (5)1.1407 (4)0.0533 (15)
C190.0835 (8)0.6401 (6)1.1165 (4)0.080 (2)
H19A0.01740.65421.17360.120*
H19B0.05520.57671.09250.120*
H19C0.06420.70511.06770.120*
O70.3077 (5)0.6052 (4)1.2224 (3)0.0783 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (5)0.0220 (5)0.0214 (4)0.0005 (4)0.0038 (4)0.0029 (4)
S10.0337 (8)0.0469 (8)0.0445 (8)0.0041 (6)0.0116 (6)0.0091 (6)
S20.0320 (8)0.0475 (8)0.0544 (9)0.0048 (6)0.0045 (6)0.0224 (7)
S30.0447 (8)0.0283 (7)0.0344 (7)0.0037 (6)0.0073 (6)0.0046 (6)
S40.0442 (9)0.0285 (7)0.0352 (7)0.0008 (6)0.0064 (6)0.0022 (6)
N10.032 (2)0.023 (2)0.027 (2)0.0001 (17)0.0035 (18)0.0045 (16)
N20.029 (2)0.032 (2)0.031 (2)0.0006 (18)0.0004 (17)0.0096 (17)
N30.041 (3)0.040 (2)0.028 (2)0.006 (2)0.0017 (19)0.0041 (19)
N40.045 (3)0.032 (2)0.031 (2)0.000 (2)0.0044 (19)0.0059 (18)
N50.063 (3)0.025 (2)0.033 (2)0.005 (2)0.005 (2)0.0003 (18)
N60.064 (3)0.033 (2)0.034 (2)0.005 (2)0.009 (2)0.009 (2)
O10.045 (2)0.0283 (18)0.0269 (17)0.0018 (15)0.0093 (15)0.0049 (14)
O20.040 (2)0.0259 (17)0.0311 (18)0.0016 (15)0.0044 (15)0.0009 (14)
C10.044 (4)0.051 (3)0.033 (3)0.003 (3)0.011 (2)0.004 (2)
C20.032 (3)0.021 (2)0.033 (3)0.003 (2)0.009 (2)0.000 (2)
C30.029 (3)0.024 (2)0.039 (3)0.004 (2)0.001 (2)0.006 (2)
C40.045 (3)0.033 (3)0.034 (3)0.003 (2)0.004 (2)0.001 (2)
C50.037 (3)0.030 (3)0.025 (2)0.003 (2)0.006 (2)0.003 (2)
C60.043 (3)0.041 (3)0.028 (3)0.000 (3)0.003 (2)0.008 (2)
C70.058 (4)0.054 (4)0.032 (3)0.003 (3)0.010 (3)0.009 (3)
C80.063 (4)0.059 (4)0.041 (3)0.006 (3)0.006 (3)0.021 (3)
C90.072 (5)0.043 (3)0.053 (4)0.007 (3)0.004 (3)0.023 (3)
C100.064 (4)0.035 (3)0.046 (3)0.002 (3)0.003 (3)0.009 (3)
C110.047 (3)0.032 (3)0.030 (3)0.000 (2)0.002 (2)0.005 (2)
C120.038 (3)0.037 (3)0.024 (2)0.002 (2)0.000 (2)0.007 (2)
C130.055 (4)0.029 (3)0.035 (3)0.009 (2)0.011 (2)0.001 (2)
C140.031 (3)0.032 (3)0.027 (2)0.004 (2)0.003 (2)0.003 (2)
C150.039 (3)0.030 (3)0.034 (3)0.006 (2)0.001 (2)0.004 (2)
C160.065 (4)0.045 (3)0.042 (3)0.008 (3)0.015 (3)0.010 (3)
Cl10.0632 (11)0.0652 (10)0.0325 (7)0.0056 (8)0.0009 (7)0.0088 (7)
O30.272 (10)0.067 (4)0.192 (7)0.046 (5)0.065 (6)0.011 (4)
O40.118 (4)0.121 (4)0.058 (3)0.035 (4)0.036 (3)0.027 (3)
O50.094 (4)0.184 (6)0.047 (3)0.006 (4)0.009 (2)0.053 (3)
O60.063 (4)0.187 (6)0.117 (4)0.013 (4)0.039 (3)0.041 (4)
C170.100 (7)0.176 (9)0.056 (5)0.007 (6)0.020 (4)0.036 (5)
C180.065 (4)0.052 (4)0.041 (3)0.004 (3)0.001 (3)0.009 (3)
C190.082 (6)0.100 (6)0.058 (4)0.015 (4)0.016 (4)0.011 (4)
O70.054 (3)0.135 (4)0.044 (2)0.007 (3)0.002 (2)0.018 (3)
Geometric parameters (Å, º) top
Ni1—N12.129 (4)C4—H4A0.9700
Ni1—O12.089 (3)C4—H4B0.9700
Ni1—O22.050 (3)C5—C121.454 (6)
Ni1—O2i2.050 (3)C6—C111.416 (6)
Ni1—O1i2.089 (3)C6—C71.424 (6)
Ni1—N1i2.129 (4)C7—C81.372 (7)
S1—C21.729 (5)C7—H70.9300
S1—C31.737 (5)C8—C91.402 (7)
S2—C31.747 (5)C8—H80.9300
S2—C41.845 (5)C9—C101.364 (7)
S3—C141.758 (4)C9—H90.9300
S3—C131.820 (5)C10—C111.416 (6)
S4—C151.732 (5)C10—H100.9300
S4—C141.734 (4)C12—C131.501 (6)
N1—C21.308 (5)C13—H13A0.9700
N1—N21.396 (5)C13—H13B0.9700
N2—C31.310 (5)C15—C161.492 (6)
N3—C51.314 (6)C16—H16A0.9600
N3—C61.380 (6)C16—H16B0.9600
N4—C121.317 (6)C16—H16C0.9600
N4—C111.384 (6)Cl1—O31.386 (5)
N5—C141.308 (6)Cl1—O41.399 (4)
N5—N61.396 (5)Cl1—O61.406 (5)
N6—C151.300 (6)Cl1—O51.440 (4)
O1—H110.8831C17—C181.480 (8)
O1—H120.8656C17—H17A0.9600
O2—H210.8513C17—H17B0.9600
O2—H220.8536C17—H17C0.9600
C1—C21.502 (6)C18—O71.210 (6)
C1—H1A0.9600C18—C191.495 (8)
C1—H1B0.9600C19—H19A0.9600
C1—H1C0.9600C19—H19B0.9600
C4—C51.508 (6)C19—H19C0.9600
N1i—Ni1—N1180.0C8—C7—C6119.3 (5)
O1—Ni1—N1i88.16 (13)C8—C7—H7120.3
O1i—Ni1—O1180.0C6—C7—H7120.3
O2—Ni1—O1i87.03 (12)C7—C8—C9120.9 (5)
O2—Ni1—O192.97 (12)C7—C8—H8119.6
O2—Ni1—N1i90.37 (13)C9—C8—H8119.6
O2—Ni1—N189.63 (13)C10—C9—C8121.4 (5)
O2i—Ni1—O2180.0C10—C9—H9119.3
O2i—Ni1—O1i92.97 (12)C8—C9—H9119.3
O2i—Ni1—O187.03 (12)C9—C10—C11119.2 (5)
O2i—Ni1—N1i89.63 (13)C9—C10—H10120.4
O1i—Ni1—N1i91.84 (13)C11—C10—H10120.4
O2i—Ni1—N190.37 (13)N4—C11—C10119.6 (4)
O1i—Ni1—N188.16 (13)N4—C11—C6120.4 (4)
O1—Ni1—N191.84 (13)C10—C11—C6120.0 (5)
C2—S1—C387.6 (2)N4—C12—C5121.8 (4)
C3—S2—C4102.0 (2)N4—C12—C13117.7 (4)
C14—S3—C1397.6 (2)C5—C12—C13120.4 (4)
C15—S4—C1487.2 (2)C12—C13—S3110.3 (3)
C2—N1—N2113.5 (4)C12—C13—H13A109.6
C2—N1—Ni1134.0 (3)S3—C13—H13A109.6
N2—N1—Ni1112.5 (3)C12—C13—H13B109.6
C3—N2—N1111.6 (4)S3—C13—H13B109.6
C5—N3—C6117.2 (4)H13A—C13—H13B108.1
C12—N4—C11117.4 (4)N5—C14—S4114.3 (3)
C14—N5—N6111.4 (4)N5—C14—S3126.0 (3)
C15—N6—N5113.5 (4)S4—C14—S3119.7 (3)
Ni1—O1—H11104.4N6—C15—C16124.0 (4)
Ni1—O1—H12121.1N6—C15—S4113.5 (4)
H11—O1—H12112.4C16—C15—S4122.4 (4)
Ni1—O2—H21122.1C15—C16—H16A109.5
Ni1—O2—H22116.7C15—C16—H16B109.5
H21—O2—H22112.3H16A—C16—H16B109.5
C2—C1—H1A109.5C15—C16—H16C109.5
C2—C1—H1B109.5H16A—C16—H16C109.5
H1A—C1—H1B109.5H16B—C16—H16C109.5
C2—C1—H1C109.5O3—Cl1—O4109.0 (4)
H1A—C1—H1C109.5O3—Cl1—O6112.7 (5)
H1B—C1—H1C109.5O4—Cl1—O6110.6 (4)
N1—C2—C1125.0 (4)O3—Cl1—O5109.8 (4)
N1—C2—S1113.3 (3)O4—Cl1—O5106.9 (3)
C1—C2—S1121.7 (3)O6—Cl1—O5107.6 (3)
N2—C3—S1114.0 (3)C18—C17—H17A109.5
N2—C3—S2126.4 (4)C18—C17—H17B109.5
S1—C3—S2119.6 (3)H17A—C17—H17B109.5
C5—C4—S2110.1 (3)C18—C17—H17C109.5
C5—C4—H4A109.6H17A—C17—H17C109.5
S2—C4—H4A109.6H17B—C17—H17C109.5
C5—C4—H4B109.6O7—C18—C17120.0 (6)
S2—C4—H4B109.6O7—C18—C19123.5 (6)
H4A—C4—H4B108.2C17—C18—C19116.5 (6)
N3—C5—C12121.7 (4)C18—C19—H19A109.5
N3—C5—C4116.8 (4)C18—C19—H19B109.5
C12—C5—C4121.6 (4)H19A—C19—H19B109.5
N3—C6—C11121.6 (4)C18—C19—H19C109.5
N3—C6—C7119.3 (5)H19A—C19—H19C109.5
C11—C6—C7119.1 (5)H19B—C19—H19C109.5
O2i—Ni1—N1—C2139.3 (4)C11—C6—C7—C80.9 (8)
O2—Ni1—N1—C240.7 (4)C6—C7—C8—C90.1 (9)
O1i—Ni1—N1—C2127.7 (4)C7—C8—C9—C100.7 (9)
O1—Ni1—N1—C252.3 (4)C8—C9—C10—C110.1 (9)
O2i—Ni1—N1—N241.5 (3)C12—N4—C11—C10179.1 (5)
O2—Ni1—N1—N2138.5 (3)C12—N4—C11—C60.4 (7)
O1i—Ni1—N1—N251.4 (3)C9—C10—C11—N4179.7 (5)
O1—Ni1—N1—N2128.6 (3)C9—C10—C11—C61.0 (8)
C2—N1—N2—C30.3 (5)N3—C6—C11—N40.6 (8)
Ni1—N1—N2—C3179.0 (3)C7—C6—C11—N4179.8 (5)
C14—N5—N6—C150.4 (6)N3—C6—C11—C10179.2 (5)
N2—N1—C2—C1180.0 (4)C7—C6—C11—C101.5 (8)
Ni1—N1—C2—C10.8 (7)C11—N4—C12—C50.6 (7)
N2—N1—C2—S10.0 (5)C11—N4—C12—C13177.9 (4)
Ni1—N1—C2—S1179.2 (2)N3—C5—C12—N41.5 (7)
C3—S1—C2—N10.3 (3)C4—C5—C12—N4178.1 (4)
C3—S1—C2—C1179.8 (4)N3—C5—C12—C13177.0 (5)
N1—N2—C3—S10.5 (5)C4—C5—C12—C133.4 (7)
N1—N2—C3—S2180.0 (3)N4—C12—C13—S312.9 (6)
C2—S1—C3—N20.5 (4)C5—C12—C13—S3168.6 (4)
C2—S1—C3—S2180.0 (3)C14—S3—C13—C12178.1 (4)
C4—S2—C3—N214.0 (4)N6—N5—C14—S40.1 (6)
C4—S2—C3—S1166.5 (3)N6—N5—C14—S3178.6 (3)
C3—S2—C4—C5121.8 (3)C15—S4—C14—N50.1 (4)
C6—N3—C5—C121.3 (7)C15—S4—C14—S3178.5 (3)
C6—N3—C5—C4178.3 (4)C13—S3—C14—N510.2 (5)
S2—C4—C5—N3104.1 (4)C13—S3—C14—S4171.3 (3)
S2—C4—C5—C1275.5 (5)N5—N6—C15—C16178.3 (4)
C5—N3—C6—C110.3 (7)N5—N6—C15—S40.5 (6)
C5—N3—C6—C7178.9 (5)C14—S4—C15—N60.3 (4)
N3—C6—C7—C8179.8 (5)C14—S4—C15—C16178.5 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N5i0.882.022.899 (5)171
O1—H11···N6i0.882.523.323 (5)152
O1—H12···O5ii0.871.872.734 (5)174
O2—H21···O7iii0.852.072.825 (5)147
O2—H22···N60.851.992.835 (5)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1, z1; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C16H14N6S4)2(H2O)4](ClO4)2·2C3H6O
Mr1282.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.300 (7), 12.223 (9), 13.964 (10)
α, β, γ (°)81.108 (13), 86.415 (12), 79.596 (13)
V3)1375.8 (18)
Z1
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker Smart 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.789, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
7534, 5461, 3264
Rint0.034
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.111, 1.07
No. of reflections5461
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.58

Computer programs: SMART (Bruker, 1998), SMART, SAINT and SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—N12.129 (4)Ni1—O22.050 (3)
Ni1—O12.089 (3)
N1i—Ni1—N1180.0O2—Ni1—O192.97 (12)
O1—Ni1—N1i88.16 (13)O2—Ni1—N1i90.37 (13)
O1i—Ni1—O1180.0O2—Ni1—N189.63 (13)
O2—Ni1—O1i87.03 (12)O2i—Ni1—O2180.0
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N5i0.882.022.899 (5)171.3
O1—H11···N6i0.882.523.323 (5)152.0
O1—H12···O5ii0.871.872.734 (5)173.5
O2—H21···O7iii0.852.072.825 (5)147.2
O2—H22···N60.851.992.835 (5)172.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1, z1; (iii) x+1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds