Download citation
Download citation
link to html
The title carboxyl-functionalized iron complex, [Fe(CH3)(C6H5O2)(CO)2], was prepared by the reaction of CO2 with a lithia­ted parent unsubstituted compound. The Fe(CO)2Me legs of the tripodal piano stool are characterized by disorder between the methyl group and the carbonyl group, and the two ligands were refined (50% site occupancy) over the two positions. The ligands are alternately located on either side of a local pseudo-mirror plane running through the carboxylic functionality and the central Fe atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030473/lh6507sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030473/lh6507Isup2.hkl
Contains datablock I

CCDC reference: 287639

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.025
  • wR factor = 0.069
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT301_ALERT_3_C Main Residue Disorder ......................... 18.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Group six analogs of the title complex have been prepared (El Mouattasim et al., 1994) with the aim of utilizing the functional carboxylic acid group as labeling agents for amino acids. We prepared the title compound, (I), as part of our interest in solvent-free solid–gas reactions. It was envisaged that the network of hydrogen bonding between neighbouring molecules via the carboxylic acid functionality will serve as channels for small gaseous molecules to permeate into the crystal lattice (Braga et al., 2002; Fig. 2). Preliminary studies with SO2 have indicated otherwise, indicating that intramolecular forces, such as steric interactions between ligands bonded to the central metal atom may be more crucial in influencing the single-crystal/gas reactivity (Munyaneza et al., 2005).

In the title compound, the Fe(CO)2Me leg of the tripodal piano stool is characterized by a disordered Me group which was refined over positions C2 and C2'. These are located on opposite sides of a local psuedo-mirror plane running through the carboxylic acid functionality and the central Fe metal with 50% occupancy of each site (Fig. 1). Mousser et al. (1996) have prepared four-legged piano stool tungsten analogs of the title complex, and it is interesting to note that the Me group was similarly disordered between two trans positions in syn and anti configurations relative to the carboxylic acid functional group. In the crystal structure, molecules form the expected centrosymmetric dimers via O—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental top

The title complex was prepared by adapting the method of El Mouattasim et al. (1994) except that (η5-C5H5)Fe(CO)2Me and butyllithium were substituted for (η5-C5H5)Mo(CO)3Me and sec-butyllithium. Single crystals suitable for X-ray diffraction were grown from CH2Cl2/hexane. IR vCO (CH2Cl2, cm−1): 2059 (vs), 1998 (vs); 1H NMR (CDCl3, p.p.m.): 5.31 (s, 2H, CpH), 4.86 (s, 2H, CpH), 0.28 (s, 3H, Me).

Refinement top

The H atoms attached to aromatic C atoms were positioned geometrically and allowed to ride on parent atoms during refinement, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The disordered methyl H atoms were accounted for using a two-site model, in which the H atoms were placed geometrically and allowed to ride, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1999) diagrams of the title complex, showing the two conformations with the Me and CO ligands interchanged. Displacement ellipsoids are shown at 50% probability level.
[Figure 2] Fig. 2. Packing diagram, showing the hydrogen bonding (dashed lines) between neighbouring carboxyl molecules.
Dicarbonyl(η5-1-carboxycyclopentadienyl)methyliron(II) top
Crystal data top
[Fe(CH3)(C6H5O2)(CO)2]F(000) = 480
Mr = 236.00Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 830 reflections
a = 7.6183 (15) Åθ = 2.6–30.2°
b = 10.714 (2) ŵ = 1.58 mm1
c = 12.039 (2) ÅT = 173 K
β = 105.661 (4)°Block, brown
V = 946.2 (3) Å30.24 × 0.19 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2276 independent reflections
Radiation source: fine-focus sealed tube1978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 109
Tmin = 0.704, Tmax = 0.754k = 1314
6617 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max = 0.034
156 parametersΔρmax = 0.31 e Å3
8 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(CH3)(C6H5O2)(CO)2]V = 946.2 (3) Å3
Mr = 236.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6183 (15) ŵ = 1.58 mm1
b = 10.714 (2) ÅT = 173 K
c = 12.039 (2) Å0.24 × 0.19 × 0.19 mm
β = 105.661 (4)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1978 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.754Rint = 0.024
6617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0258 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
2276 reflectionsΔρmin = 0.30 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.556 (2)0.2166 (12)0.1394 (13)0.039 (2)0.551 (5)
H2A0.64480.22050.09380.059*0.551 (5)
H2B0.55490.29640.17900.059*0.551 (5)
H2C0.43470.19980.08840.059*0.551 (5)
C10.4782 (19)0.0213 (14)0.1556 (13)0.0298 (17)0.551 (5)
O30.3807 (4)0.0845 (2)0.0875 (2)0.0456 (9)0.551 (5)
C1'0.580 (3)0.2079 (15)0.1612 (15)0.035 (2)0.449 (5)
O3'0.5522 (5)0.2868 (3)0.0945 (3)0.0536 (12)0.449 (5)
C2'0.473 (3)0.0340 (19)0.1368 (17)0.035 (3)0.449 (5)
H2'10.54790.06960.09000.052*0.449 (5)
H2'20.37300.01440.08720.052*0.449 (5)
H2'30.42290.10150.17380.052*0.449 (5)
C30.4404 (2)0.11550 (19)0.31256 (15)0.0366 (4)
C40.89004 (19)0.03310 (16)0.25142 (12)0.0247 (3)
C50.8231 (2)0.06350 (14)0.31040 (14)0.0271 (3)
H50.80710.14850.28760.033*
C60.7851 (2)0.01092 (17)0.40820 (13)0.0313 (4)
H60.73730.05420.46250.038*
C70.8300 (2)0.11786 (18)0.41208 (14)0.0335 (4)
H70.81790.17550.46950.040*
C80.8956 (2)0.14543 (16)0.31631 (14)0.0319 (4)
H80.93630.22470.29800.038*
C90.9399 (2)0.01941 (15)0.14299 (13)0.0244 (3)
O10.99336 (18)0.11962 (11)0.10201 (11)0.0339 (3)
H11.01600.10320.03910.051*
O20.93037 (18)0.08486 (10)0.09565 (11)0.0329 (3)
O50.3221 (2)0.13996 (19)0.34747 (14)0.0649 (5)
Fe0.62709 (3)0.07778 (2)0.257978 (18)0.02464 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.051 (5)0.039 (4)0.030 (5)0.003 (3)0.014 (4)0.001 (2)
C10.028 (3)0.036 (3)0.024 (4)0.003 (2)0.003 (2)0.001 (2)
O30.0418 (16)0.0463 (16)0.0384 (15)0.0099 (11)0.0066 (12)0.0078 (11)
C1'0.039 (4)0.042 (4)0.027 (5)0.014 (3)0.016 (4)0.006 (3)
O3'0.076 (3)0.048 (2)0.042 (2)0.0259 (18)0.0256 (17)0.0233 (16)
C2'0.037 (4)0.041 (5)0.024 (5)0.008 (3)0.003 (3)0.004 (3)
C30.0292 (8)0.0505 (11)0.0298 (8)0.0045 (8)0.0073 (7)0.0034 (8)
C40.0214 (7)0.0279 (8)0.0255 (7)0.0001 (6)0.0076 (6)0.0002 (6)
C50.0265 (8)0.0267 (8)0.0278 (8)0.0030 (6)0.0067 (6)0.0040 (6)
C60.0271 (8)0.0438 (10)0.0224 (8)0.0030 (7)0.0058 (6)0.0066 (7)
C70.0280 (8)0.0457 (10)0.0267 (8)0.0036 (7)0.0072 (6)0.0103 (7)
C80.0293 (8)0.0326 (9)0.0365 (9)0.0078 (7)0.0132 (7)0.0084 (7)
C90.0204 (7)0.0263 (8)0.0273 (7)0.0023 (6)0.0081 (6)0.0020 (6)
O10.0452 (7)0.0276 (6)0.0358 (6)0.0043 (5)0.0227 (5)0.0004 (5)
O20.0459 (7)0.0241 (6)0.0342 (6)0.0045 (5)0.0200 (6)0.0004 (5)
O50.0393 (8)0.1098 (15)0.0507 (9)0.0129 (9)0.0209 (7)0.0090 (9)
Fe0.02289 (13)0.03106 (14)0.02088 (13)0.00366 (8)0.00746 (9)0.00159 (8)
Geometric parameters (Å, º) top
C2—Fe2.031 (8)C4—C91.462 (2)
C2—H2A0.9800C4—Fe2.0818 (15)
C2—H2B0.9800C5—C61.404 (2)
C2—H2C0.9800C5—Fe2.1002 (16)
C1—O31.164 (7)C5—H50.9500
C1—Fe1.782 (7)C6—C71.419 (3)
C1'—O3'1.146 (7)C6—Fe2.1088 (16)
C1'—Fe1.790 (8)C6—H60.9500
C2'—Fe2.004 (9)C7—C81.406 (2)
C2'—H2'10.9800C7—Fe2.1138 (17)
C2'—H2'20.9800C7—H70.9500
C2'—H2'30.9800C8—Fe2.1040 (16)
C3—O51.124 (2)C8—H80.9500
C3—Fe1.7670 (19)C9—O21.2472 (19)
C4—C51.425 (2)C9—O11.2926 (19)
C4—C81.429 (2)O1—H10.8400
Fe—C2—H2A109.5O1—C9—C4116.23 (14)
Fe—C2—H2B109.5C9—O1—H1109.5
H2A—C2—H2B109.5C3—Fe—C188.1 (6)
Fe—C2—H2C109.5C3—Fe—C1'91.4 (6)
H2A—C2—H2C109.5C1—Fe—C1'92.1 (9)
H2B—C2—H2C109.5C3—Fe—C2'92.0 (7)
O3—C1—Fe178.9 (16)C1—Fe—C2'4.0 (13)
O3'—C1'—Fe176.1 (18)C1'—Fe—C2'91.0 (10)
Fe—C2'—H2'1109.5C3—Fe—C290.3 (5)
Fe—C2'—H2'2109.5C1—Fe—C287.2 (8)
H2'1—C2'—H2'2109.5C1'—Fe—C24.9 (12)
Fe—C2'—H2'3109.5C2'—Fe—C286.2 (9)
H2'1—C2'—H2'3109.5C3—Fe—C4161.09 (7)
H2'2—C2'—H2'3109.5C1—Fe—C4106.0 (5)
O5—C3—Fe179.7 (2)C1'—Fe—C4100.3 (6)
C5—C4—C8107.52 (14)C2'—Fe—C4102.4 (7)
C5—C4—C9125.88 (15)C2—Fe—C4102.6 (5)
C8—C4—C9126.59 (15)C3—Fe—C5129.16 (8)
C5—C4—Fe70.77 (9)C1—Fe—C592.7 (5)
C8—C4—Fe70.87 (9)C1'—Fe—C5139.2 (6)
C9—C4—Fe122.78 (10)C2'—Fe—C591.0 (7)
C6—C5—C4108.00 (14)C2—Fe—C5140.5 (5)
C6—C5—Fe70.84 (9)C4—Fe—C539.84 (6)
C4—C5—Fe69.38 (9)C3—Fe—C8127.20 (8)
C6—C5—H5126.0C1—Fe—C8144.7 (6)
C4—C5—H5126.0C1'—Fe—C887.4 (7)
Fe—C5—H5125.4C2'—Fe—C8140.7 (7)
C5—C6—C7108.36 (14)C2—Fe—C891.9 (5)
C5—C6—Fe70.18 (9)C4—Fe—C839.93 (6)
C7—C6—Fe70.55 (9)C5—Fe—C866.40 (6)
C5—C6—H6125.8C3—Fe—C696.57 (7)
C7—C6—H6125.8C1—Fe—C6115.7 (6)
Fe—C6—H6125.0C1'—Fe—C6151.2 (7)
C8—C7—C6108.26 (15)C2'—Fe—C6116.2 (7)
C8—C7—Fe70.15 (9)C2—Fe—C6156.2 (5)
C6—C7—Fe70.17 (9)C4—Fe—C666.21 (6)
C8—C7—H7125.9C5—Fe—C638.98 (6)
C6—C7—H7125.9C8—Fe—C665.84 (7)
Fe—C7—H7125.4C3—Fe—C795.66 (8)
C7—C8—C4107.86 (15)C1—Fe—C7154.9 (6)
C7—C8—Fe70.90 (9)C1'—Fe—C7112.5 (7)
C4—C8—Fe69.20 (8)C2'—Fe—C7155.0 (7)
C7—C8—H8126.1C2—Fe—C7117.4 (5)
C4—C8—H8126.1C4—Fe—C766.21 (6)
Fe—C8—H8125.4C5—Fe—C765.82 (7)
O2—C9—O1123.71 (15)C8—Fe—C738.95 (6)
O2—C9—C4120.06 (14)C6—Fe—C739.28 (7)
C8—C4—C5—C61.11 (18)C4—C5—Fe—C2'108.4 (7)
C9—C4—C5—C6177.69 (14)C6—C5—Fe—C2141.9 (8)
Fe—C4—C5—C660.60 (11)C4—C5—Fe—C223.2 (8)
C8—C4—C5—Fe61.71 (11)C6—C5—Fe—C4118.70 (14)
C9—C4—C5—Fe117.09 (15)C6—C5—Fe—C880.21 (10)
C4—C5—C6—C70.82 (18)C4—C5—Fe—C838.50 (9)
Fe—C5—C6—C760.49 (11)C4—C5—Fe—C6118.70 (14)
C4—C5—C6—Fe59.68 (11)C6—C5—Fe—C737.44 (10)
C5—C6—C7—C80.20 (18)C4—C5—Fe—C781.26 (10)
Fe—C6—C7—C860.06 (12)C7—C8—Fe—C342.07 (15)
C5—C6—C7—Fe60.26 (11)C4—C8—Fe—C3160.67 (11)
C6—C7—C8—C40.49 (19)C7—C8—Fe—C1138.3 (10)
Fe—C7—C8—C459.58 (11)C4—C8—Fe—C119.7 (10)
C6—C7—C8—Fe60.07 (11)C7—C8—Fe—C1'131.9 (7)
C5—C4—C8—C70.99 (18)C4—C8—Fe—C1'109.5 (7)
C9—C4—C8—C7177.80 (14)C7—C8—Fe—C2'139.9 (11)
Fe—C4—C8—C760.66 (12)C4—C8—Fe—C2'21.3 (11)
C5—C4—C8—Fe61.65 (11)C7—C8—Fe—C2133.9 (5)
C9—C4—C8—Fe117.15 (15)C4—C8—Fe—C2107.5 (5)
C5—C4—C9—O22.1 (2)C7—C8—Fe—C4118.60 (15)
C8—C4—C9—O2179.28 (15)C7—C8—Fe—C580.18 (11)
Fe—C4—C9—O291.13 (17)C4—C8—Fe—C538.42 (9)
C5—C4—C9—O1178.23 (15)C7—C8—Fe—C637.38 (11)
C8—C4—C9—O10.3 (2)C4—C8—Fe—C681.21 (11)
Fe—C4—C9—O189.24 (16)C4—C8—Fe—C7118.60 (15)
C5—C4—Fe—C362.8 (3)C5—C6—Fe—C3150.25 (11)
C8—C4—Fe—C354.5 (3)C7—C6—Fe—C390.91 (11)
C9—C4—Fe—C3176.3 (2)C5—C6—Fe—C159.2 (6)
C5—C4—Fe—C174.4 (6)C7—C6—Fe—C1178.0 (6)
C8—C4—Fe—C1168.3 (6)C5—C6—Fe—C1'104.5 (14)
C9—C4—Fe—C146.5 (7)C7—C6—Fe—C1'14.3 (14)
C5—C4—Fe—C1'169.6 (7)C5—C6—Fe—C2'54.7 (8)
C8—C4—Fe—C1'73.1 (7)C7—C6—Fe—C2'173.5 (8)
C9—C4—Fe—C1'48.7 (7)C5—C6—Fe—C2103.8 (13)
C5—C4—Fe—C2'76.3 (7)C7—C6—Fe—C215.1 (13)
C8—C4—Fe—C2'166.4 (7)C5—C6—Fe—C437.89 (9)
C9—C4—Fe—C2'44.6 (8)C7—C6—Fe—C480.95 (10)
C5—C4—Fe—C2165.1 (5)C7—C6—Fe—C5118.83 (14)
C8—C4—Fe—C277.6 (5)C5—C6—Fe—C881.77 (10)
C9—C4—Fe—C244.2 (5)C7—C6—Fe—C837.07 (9)
C8—C4—Fe—C5117.28 (13)C5—C6—Fe—C7118.83 (14)
C9—C4—Fe—C5120.91 (18)C8—C7—Fe—C3147.57 (12)
C5—C4—Fe—C8117.28 (13)C6—C7—Fe—C393.47 (11)
C9—C4—Fe—C8121.81 (18)C8—C7—Fe—C1114.7 (14)
C5—C4—Fe—C637.08 (10)C6—C7—Fe—C14.2 (14)
C8—C4—Fe—C680.20 (11)C8—C7—Fe—C1'53.6 (7)
C9—C4—Fe—C6157.99 (16)C6—C7—Fe—C1'172.6 (7)
C5—C4—Fe—C780.19 (10)C8—C7—Fe—C2'105.2 (16)
C8—C4—Fe—C737.09 (10)C6—C7—Fe—C2'13.8 (16)
C9—C4—Fe—C7158.91 (16)C8—C7—Fe—C254.2 (6)
C6—C5—Fe—C339.47 (14)C6—C7—Fe—C2173.2 (6)
C4—C5—Fe—C3158.18 (11)C8—C7—Fe—C438.01 (10)
C6—C5—Fe—C1129.2 (6)C6—C7—Fe—C480.95 (10)
C4—C5—Fe—C1112.1 (6)C8—C7—Fe—C581.80 (11)
C6—C5—Fe—C1'134.5 (11)C6—C7—Fe—C537.16 (9)
C4—C5—Fe—C1'15.8 (11)C6—C7—Fe—C8118.96 (15)
C6—C5—Fe—C2'132.9 (7)C8—C7—Fe—C6118.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6240 (19)174
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Fe(CH3)(C6H5O2)(CO)2]
Mr236.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.6183 (15), 10.714 (2), 12.039 (2)
β (°) 105.661 (4)
V3)946.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.24 × 0.19 × 0.19
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.704, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
6617, 2276, 1978
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.08
No. of reflections2276
No. of parameters156
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXTL (Bruker, 1999), SHELXL97 (Sheldrick, 1997), SHELXTL and ORTEP-3 (Farrugia, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
C2—Fe2.031 (8)C2'—Fe2.004 (9)
C1—O31.164 (7)C3—O51.124 (2)
C1—Fe1.782 (7)C3—Fe1.7670 (19)
C1'—O3'1.146 (7)C9—O21.2472 (19)
C1'—Fe1.790 (8)C9—O11.2926 (19)
O3—C1—Fe178.9 (16)C3—Fe—C188.1 (6)
O3'—C1'—Fe176.1 (18)C3—Fe—C290.3 (5)
O5—C3—Fe179.7 (2)C1—Fe—C287.2 (8)
O2—C9—O1123.71 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6240 (19)174
Symmetry code: (i) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds