Download citation
Download citation
link to html
The mol­ecule of the title compound, C48H60N4O12, is located on a crystallographic twofold rotation axis. It is found in the typical pinched cone conformation. The dihedral angles between the reference plane (defined by the C atoms of the methyl­ene bridges) and the benzene rings are 83.33 (6) and 141.61 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030862/lh6509sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030862/lh6509Isup2.hkl
Contains datablock I

CCDC reference: 287662

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.082
  • wR factor = 0.247
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 5.71 Ratio
Author Response: The pentyl chain is slightly disordered.
PLAT222_ALERT_3_A Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       5.11 Ratio
Author Response: The pentyl chain is slightly disordered.
PLAT241_ALERT_2_A Check High      Ueq as Compared to Neighbors for       C224
Author Response: The atom shows an elongated ellipsoid which is a sign of disorder, but refining it on two split positions, did not improve the refinement.
PLAT242_ALERT_2_A Check Low       Ueq as Compared to Neighbors for       C223
Author Response: This happens because the displacement parameter of C224 bigger than usual.

Alert level B DIFMN02_ALERT_2_B The minimum difference density is < -0.1*ZMAX*1.00 _refine_diff_density_min given = -0.872 Test value = -0.800 PLAT098_ALERT_2_B Minimum (Negative) Residual Density ............ -0.87 e/A   3 PLAT230_ALERT_2_B Hirshfeld Test Diff for C223 - C224 .. 7.59 su PLAT360_ALERT_2_B Short C(sp3)-C(sp3) Bond C223 - C224 ... 1.27 Ang.
Alert level C DIFMN03_ALERT_1_C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.714 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097_ALERT_2_C Maximum (Positive) Residual Density ............ 0.71 e/A   3 PLAT213_ALERT_2_C Atom C224 has ADP max/min Ratio ............. 3.30 prolat PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C123
Author Response: This happens because the displacement parameter of C224 bigger than usual.
PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ...          5
PLAT360_ALERT_2_C Short  C(sp3)-C(sp3) Bond  C221   -   C222   ...       1.41 Ang.
PLAT410_ALERT_2_C Short Intra H...H Contact  H1A    ..  H22B    ..       1.97 Ang.

4 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

5,11,17,23-Tetranitro-25,26,27,28-tetrapentyloxycalix[4]arene, (I), was prepared by ipso-nitration of the corresponding tetrapentyloxycalix[4]arene with four tert-butyl groups at the wide rim (Jakobi et al., 1996). It can be easily reduced to the tetraamino derivative, (II) (see scheme) (Jakobi et al., 1996), the starting material for the synthesis of various derivatives, e.g. tetra-CMPO and tetraurea-calix[4]arenes CMPO (carbamoylmethylphosphineoxide) calix[4]arenes are highly efficient extractants for lanthanides and actinides (Arnaud-Neu et al., 1996); tetraurea-calix[4]arenes are able to form hydrogen-bonded dimeric capsules in apolar aprotic solvents (Rebek, 2000) via self-assembly. Both areas have been intensively studied during the last decade.

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Strructural Database, Version 1.6 plus three updates; Mogul Version 1.0; Allen, 2002).

The molecule adopts the typical pinched cone conformation of tetraether derivatives. The reference plane of the calixarene, defined as the mean plane of the bridging C atoms [here C1, C2, C1i and C2i; symmetry code: (i) 1 − x, y, 3/2 − z], is almost planar (r.m.s. deviation = 0.0536 Å); the rings C11–C16 and C21–C26 subtend angles of 83.33 (6) and 141.61 (5)°, respectively, with this plane. Thus, the former rings are slightly bent inwards, whereas the others are clearly bent outwards. The rings C11–C16 and C11i–C16i are almost coplanar [13.34 (14)°], whereas the other two are almost perpendicular to each other [75.94 (7)°]. In Table 1, the torsion angles describing the orientation of the aromatic rings respective to the reference plane are listed.

Both pentyloxy chains adopt all trans conformations.

Experimental top

The title compound was synthesized according to Jakobi et al. (1996). The single crystals were obtained by slow evaporation from a solution in chloroform/methanol.

Refinement top

Although the displacement ellipsoids of some atoms of the pentyl chains are rather large, the structure was refined without employing a disorder model because the current model does not show any significant peak in the final difference map (the highest peak is 0.714 e Å−3). Furthermore, a disorder model did not refine satisfactorily, because several restraints had been necessary to drive the geometric parameters to sensible values and some atoms had to be refined isotropically to prevent them from going non-positive definite. H atoms were located in a difference electron-density map, but refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C)] using a riding model with C—H distances ranging from 0.95 to 0.99 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991) and Mercury (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Unlabelled atoms are generated using the symmetry code (−x + 1, y, −z + 3/2).
[Figure 2] Fig. 2. Space-filling model of the title compound showing the pinched cone conformation; H atoms have been omitted for clarity.
5,11,17,23-Tetranitro-25,26,27,28-tetrapentyloxycalix[4]arene top
Crystal data top
C48H60N4O12F(000) = 1888
Mr = 885.00Dx = 1.231 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 31383 reflections
a = 22.5587 (11) Åθ = 1.9–25.2°
b = 11.8751 (4) ŵ = 0.09 mm1
c = 19.2336 (11) ÅT = 173 K
β = 112.057 (4)°Block, light yellow
V = 4775.3 (4) Å30.38 × 0.35 × 0.29 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
3906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
ω scansh = 2828
39302 measured reflectionsk = 1414
4859 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1304P)2 + 6.4471P]
where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C48H60N4O12V = 4775.3 (4) Å3
Mr = 885.00Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.5587 (11) ŵ = 0.09 mm1
b = 11.8751 (4) ÅT = 173 K
c = 19.2336 (11) Å0.38 × 0.35 × 0.29 mm
β = 112.057 (4)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
3906 reflections with I > 2σ(I)
39302 measured reflectionsRint = 0.065
4859 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
4859 reflectionsΔρmin = 0.87 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32765 (12)0.1913 (3)0.67257 (16)0.0509 (6)
H1A0.32910.27340.66460.061*
H1B0.28350.16490.64440.061*
C110.37390 (11)0.1311 (2)0.64399 (14)0.0445 (6)
C120.41166 (11)0.1901 (2)0.61240 (13)0.0435 (6)
C130.45786 (11)0.1359 (2)0.59221 (13)0.0417 (5)
C140.46319 (12)0.0192 (2)0.59983 (14)0.0464 (6)
H140.49360.02020.58570.056*
C150.42435 (13)0.0385 (2)0.62775 (15)0.0498 (6)
C160.38093 (13)0.0154 (2)0.65177 (15)0.0505 (6)
H160.35630.02660.67330.061*
O120.40590 (8)0.30550 (15)0.60494 (11)0.0500 (5)
C1210.35507 (14)0.3428 (3)0.53705 (17)0.0618 (8)
H12A0.31300.31950.53730.074*
H12B0.36030.30940.49250.074*
C1220.35903 (16)0.4697 (3)0.5347 (2)0.0676 (9)
H12C0.40140.49160.53480.081*
H12D0.35500.50160.58030.081*
C1230.30686 (16)0.5185 (3)0.4656 (2)0.0777 (11)
H12E0.30930.48200.42040.093*
H12F0.26470.49980.46740.093*
C1240.3111 (2)0.6451 (4)0.4579 (4)0.121 (2)
H12G0.30690.68200.50200.145*
H12H0.35370.66430.45770.145*
C1250.2608 (3)0.6902 (6)0.3882 (5)0.183 (4)
H12I0.26590.77190.38580.275*
H12J0.21840.67350.38870.275*
H12K0.26500.65480.34420.275*
N150.42950 (14)0.1620 (2)0.63294 (17)0.0670 (7)
O1510.40652 (19)0.2114 (2)0.6721 (2)0.1086 (12)
O1520.45627 (15)0.2101 (2)0.59706 (17)0.0847 (8)
C20.50429 (12)0.2003 (2)0.56618 (15)0.0476 (6)
H2A0.49700.17990.51370.057*
H2B0.49720.28230.56820.057*
C210.57228 (12)0.1709 (2)0.61694 (14)0.0431 (6)
C220.59615 (11)0.2081 (2)0.69183 (15)0.0421 (6)
C230.65393 (11)0.1671 (2)0.74445 (15)0.0452 (6)
C240.69011 (12)0.0951 (2)0.71960 (16)0.0487 (6)
H240.72980.06710.75380.058*
C250.66815 (12)0.0642 (2)0.64445 (16)0.0479 (6)
C260.60950 (13)0.0996 (2)0.59307 (15)0.0471 (6)
H260.59510.07540.54230.057*
O220.55846 (8)0.27841 (15)0.71432 (11)0.0489 (5)
C2210.58061 (18)0.3928 (3)0.7330 (2)0.0767 (10)
H22A0.56010.42520.76580.092*
H22B0.62740.39170.76180.092*
C2220.5676 (3)0.4632 (3)0.6696 (3)0.0917 (13)
H22C0.52090.46350.64050.110*
H22D0.58860.43130.63720.110*
C2230.5905 (3)0.5854 (3)0.6897 (3)0.0910 (13)
H22E0.55940.62200.70760.109*
H22F0.63150.58140.73340.109*
C2240.5992 (6)0.6525 (5)0.6433 (7)0.238 (6)
H22G0.55760.65840.60060.286*
H22H0.62870.61400.62380.286*
C2250.6240 (3)0.7722 (4)0.6620 (4)0.1162 (18)
H22I0.62530.80860.61680.174*
H22J0.66720.77050.70080.174*
H22K0.59560.81470.68040.174*
N250.70763 (12)0.0104 (2)0.61853 (16)0.0589 (6)
O2510.68793 (13)0.0370 (2)0.55225 (14)0.0816 (8)
O2520.75841 (11)0.0432 (2)0.66435 (15)0.0807 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (12)0.0598 (16)0.0562 (15)0.0079 (11)0.0161 (11)0.0108 (12)
C110.0341 (11)0.0521 (14)0.0424 (12)0.0024 (10)0.0085 (10)0.0058 (10)
C120.0367 (12)0.0459 (14)0.0413 (12)0.0029 (10)0.0071 (10)0.0058 (10)
C130.0386 (12)0.0459 (13)0.0362 (11)0.0004 (10)0.0089 (9)0.0036 (10)
C140.0461 (13)0.0467 (14)0.0454 (13)0.0017 (11)0.0161 (11)0.0008 (10)
C150.0528 (14)0.0447 (14)0.0510 (14)0.0006 (11)0.0183 (12)0.0033 (11)
C160.0478 (14)0.0532 (15)0.0509 (14)0.0017 (11)0.0190 (12)0.0071 (12)
O120.0439 (9)0.0456 (10)0.0565 (11)0.0089 (8)0.0142 (8)0.0127 (8)
C1210.0536 (16)0.0645 (19)0.0586 (17)0.0106 (14)0.0113 (13)0.0227 (14)
C1220.0585 (17)0.0594 (19)0.078 (2)0.0069 (14)0.0179 (16)0.0184 (16)
C1230.0575 (18)0.074 (2)0.092 (2)0.0012 (16)0.0176 (18)0.0384 (19)
C1240.077 (3)0.081 (3)0.170 (5)0.014 (2)0.008 (3)0.063 (3)
C1250.103 (4)0.140 (5)0.247 (8)0.021 (4)0.004 (5)0.132 (6)
N150.0801 (18)0.0478 (14)0.0839 (19)0.0009 (13)0.0429 (16)0.0094 (13)
O1510.153 (3)0.0590 (15)0.160 (3)0.0089 (16)0.111 (3)0.0289 (17)
O1520.114 (2)0.0500 (13)0.113 (2)0.0026 (13)0.0684 (18)0.0037 (13)
C20.0448 (13)0.0487 (14)0.0510 (14)0.0028 (11)0.0199 (11)0.0083 (11)
C210.0414 (12)0.0390 (12)0.0524 (14)0.0024 (10)0.0215 (11)0.0051 (10)
C220.0377 (12)0.0353 (12)0.0568 (14)0.0056 (9)0.0218 (11)0.0026 (10)
C230.0373 (12)0.0438 (13)0.0567 (14)0.0083 (10)0.0200 (11)0.0030 (11)
C240.0375 (12)0.0487 (15)0.0610 (16)0.0001 (10)0.0198 (11)0.0012 (12)
C250.0447 (13)0.0436 (14)0.0608 (16)0.0014 (11)0.0260 (12)0.0025 (11)
C260.0479 (13)0.0457 (14)0.0518 (14)0.0040 (11)0.0233 (11)0.0015 (11)
O220.0423 (9)0.0418 (10)0.0627 (11)0.0001 (7)0.0199 (8)0.0094 (8)
C2210.072 (2)0.0505 (18)0.096 (3)0.0002 (15)0.0189 (19)0.0095 (17)
C2220.124 (4)0.064 (2)0.116 (3)0.004 (2)0.078 (3)0.001 (2)
C2230.124 (4)0.058 (2)0.099 (3)0.014 (2)0.051 (3)0.006 (2)
C2240.367 (13)0.056 (3)0.461 (16)0.033 (5)0.349 (14)0.028 (5)
C2250.147 (5)0.058 (2)0.167 (5)0.024 (3)0.085 (4)0.005 (3)
N250.0522 (14)0.0556 (14)0.0735 (17)0.0046 (11)0.0288 (13)0.0062 (12)
O2510.0786 (16)0.101 (2)0.0718 (15)0.0199 (14)0.0356 (13)0.0180 (13)
O2520.0576 (13)0.0856 (17)0.0925 (17)0.0249 (12)0.0207 (13)0.0158 (14)
Geometric parameters (Å, º) top
C1—C23i1.518 (4)C2—C211.517 (4)
C1—C111.527 (4)C2—H2A0.9900
C1—H1A0.9900C2—H2B0.9900
C1—H1B0.9900C21—C261.386 (4)
C11—C161.385 (4)C21—C221.406 (4)
C11—C121.405 (4)C22—O221.373 (3)
C12—O121.379 (3)C22—C231.403 (4)
C12—C131.399 (4)C23—C241.385 (4)
C13—C141.393 (4)C23—C1i1.518 (4)
C13—C21.525 (3)C24—C251.390 (4)
C14—C151.371 (4)C24—H240.9500
C14—H140.9500C25—C261.386 (4)
C15—C161.386 (4)C25—N251.469 (3)
C15—N151.472 (4)C26—H260.9500
C16—H160.9500O22—C2211.445 (4)
O12—C1211.446 (3)C221—C2221.414 (6)
C121—C1221.511 (5)C221—H22A0.9900
C121—H12A0.9900C221—H22B0.9900
C121—H12B0.9900C222—C2231.541 (6)
C122—C1231.522 (4)C222—H22C0.9900
C122—H12C0.9900C222—H22D0.9900
C122—H12D0.9900C223—C2241.267 (8)
C123—C1241.517 (6)C223—H22E0.9900
C123—H12E0.9900C223—H22F0.9900
C123—H12F0.9900C224—C2251.521 (7)
C124—C1251.493 (7)C224—H22G0.9900
C124—H12G0.9900C224—H22H0.9900
C124—H12H0.9900C225—H22I0.9800
C125—H12I0.9800C225—H22J0.9800
C125—H12J0.9800C225—H22K0.9800
C125—H12K0.9800N25—O2521.217 (3)
N15—O1511.214 (4)N25—O2511.223 (3)
N15—O1521.216 (4)
C23i—C1—C11109.6 (2)C21—C2—C13109.0 (2)
C23i—C1—H1A109.7C21—C2—H2A109.9
C11—C1—H1A109.7C13—C2—H2A109.9
C23i—C1—H1B109.8C21—C2—H2B109.9
C11—C1—H1B109.7C13—C2—H2B109.9
H1A—C1—H1B108.2H2A—C2—H2B108.3
C16—C11—C12118.6 (2)C26—C21—C22119.0 (2)
C16—C11—C1119.4 (2)C26—C21—C2121.3 (2)
C12—C11—C1121.9 (2)C22—C21—C2119.5 (2)
O12—C12—C13118.6 (2)O22—C22—C23120.1 (2)
O12—C12—C11119.5 (2)O22—C22—C21118.0 (2)
C13—C12—C11121.8 (2)C23—C22—C21121.6 (2)
C14—C13—C12118.2 (2)C24—C23—C22118.2 (2)
C14—C13—C2119.4 (2)C24—C23—C1i121.0 (2)
C12—C13—C2122.4 (2)C22—C23—C1i120.4 (2)
C15—C14—C13119.7 (2)C23—C24—C25119.7 (2)
C15—C14—H14120.1C23—C24—H24120.1
C13—C14—H14120.1C25—C24—H24120.1
C14—C15—C16122.4 (3)C26—C25—C24122.2 (2)
C14—C15—N15118.6 (3)C26—C25—N25118.6 (2)
C16—C15—N15119.0 (2)C24—C25—N25119.2 (2)
C11—C16—C15119.2 (2)C25—C26—C21118.9 (2)
C11—C16—H16120.4C25—C26—H26120.5
C15—C16—H16120.4C21—C26—H26120.5
C12—O12—C121114.2 (2)C22—O22—C221116.9 (2)
O12—C121—C122107.2 (3)C222—C221—O22113.6 (3)
O12—C121—H12A110.3C222—C221—H22A108.8
C122—C121—H12A110.3O22—C221—H22A108.8
O12—C121—H12B110.3C222—C221—H22B108.8
C122—C121—H12B110.3O22—C221—H22B108.8
H12A—C121—H12B108.5H22A—C221—H22B107.7
C121—C122—C123111.8 (3)C221—C222—C223113.5 (4)
C121—C122—H12C109.3C221—C222—H22C108.9
C123—C122—H12C109.3C223—C222—H22C108.9
C121—C122—H12D109.3C221—C222—H22D108.9
C123—C122—H12D109.3C223—C222—H22D108.9
H12C—C122—H12D107.9H22C—C222—H22D107.7
C124—C123—C122114.0 (3)C224—C223—C222122.8 (6)
C124—C123—H12E108.8C224—C223—H22E106.6
C122—C123—H12E108.8C222—C223—H22E106.6
C124—C123—H12F108.8C224—C223—H22F106.6
C122—C123—H12F108.8C222—C223—H22F106.6
H12E—C123—H12F107.7H22E—C223—H22F106.6
C125—C124—C123112.9 (5)C223—C224—C225124.2 (9)
C125—C124—H12G109.0C223—C224—H22G106.3
C123—C124—H12G109.0C225—C224—H22G106.3
C125—C124—H12H109.0C223—C224—H22H106.3
C123—C124—H12H109.0C225—C224—H22H106.3
H12G—C124—H12H107.8H22G—C224—H22H106.4
C124—C125—H12I109.5C224—C225—H22I109.5
C124—C125—H12J109.5C224—C225—H22J109.5
H12I—C125—H12J109.5H22I—C225—H22J109.5
C124—C125—H12K109.5C224—C225—H22K109.5
H12I—C125—H12K109.5H22I—C225—H22K109.5
H12J—C125—H12K109.5H22J—C225—H22K109.5
O151—N15—O152123.0 (3)O252—N25—O251123.1 (3)
O151—N15—C15118.8 (3)O252—N25—C25118.2 (3)
O152—N15—C15118.2 (3)O251—N25—C25118.7 (2)
C23i—C1—C11—C1657.5 (3)C12—C13—C2—C21122.7 (2)
C23i—C1—C11—C12120.1 (3)C13—C2—C21—C26105.0 (3)
C22i—C23i—C1—C1166.6 (3)C13—C2—C21—C2269.1 (3)
C16—C11—C12—O12179.3 (2)C26—C21—C22—O22179.9 (2)
C1—C11—C12—O121.7 (3)C2—C21—C22—O225.6 (3)
C16—C11—C12—C133.1 (4)C26—C21—C22—C235.8 (4)
C1—C11—C12—C13174.4 (2)C2—C21—C22—C23168.5 (2)
O12—C12—C13—C14179.9 (2)O22—C22—C23—C24179.2 (2)
C11—C12—C13—C143.9 (3)C21—C22—C23—C245.2 (4)
O12—C12—C13—C23.3 (3)O22—C22—C23—C1i5.6 (4)
C11—C12—C13—C2172.9 (2)C21—C22—C23—C1i168.4 (2)
C12—C13—C14—C151.1 (4)C22—C23—C24—C251.1 (4)
C2—C13—C14—C15175.8 (2)C1i—C23—C24—C25172.5 (2)
C13—C14—C15—C162.5 (4)C23—C24—C25—C262.4 (4)
C13—C14—C15—N15178.0 (2)C23—C24—C25—N25178.8 (2)
C12—C11—C16—C150.5 (4)C24—C25—C26—C211.8 (4)
C1—C11—C16—C15178.1 (2)N25—C25—C26—C21179.3 (2)
C14—C15—C16—C113.4 (4)C22—C21—C26—C252.2 (4)
N15—C15—C16—C11177.2 (3)C2—C21—C26—C25172.0 (2)
C13—C12—O12—C12198.2 (3)C23—C22—O22—C22173.3 (3)
C11—C12—O12—C12185.5 (3)C21—C22—O22—C221112.4 (3)
C12—O12—C121—C122175.4 (2)C22—O22—C221—C22280.1 (4)
O12—C121—C122—C123179.3 (3)O22—C221—C222—C223179.3 (3)
C121—C122—C123—C124176.4 (4)C221—C222—C223—C224160.5 (7)
C122—C123—C124—C125178.0 (5)C222—C223—C224—C225177.7 (7)
C14—C15—N15—O151163.8 (3)C26—C25—N25—O252178.4 (3)
C16—C15—N15—O15115.7 (5)C24—C25—N25—O2520.5 (4)
C14—C15—N15—O15216.8 (4)C26—C25—N25—O2511.3 (4)
C16—C15—N15—O152163.7 (3)C24—C25—N25—O251179.8 (3)
C14—C13—C2—C2154.1 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC48H60N4O12
Mr885.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)22.5587 (11), 11.8751 (4), 19.2336 (11)
β (°) 112.057 (4)
V3)4775.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.35 × 0.29
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
39302, 4859, 3906
Rint0.065
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.247, 1.07
No. of reflections4859
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.87

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991) and Mercury (Version 1.4; Bruno et al., 2002), SHELXL97 and PLATON (Spek, 2003).

Selected torsion angles (º) top
C23i—C1—C11—C12120.1 (3)C12—C13—C2—C21122.7 (2)
C22i—C23i—C1—C1166.6 (3)C13—C2—C21—C2269.1 (3)
Symmetry code: (i) x+1, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds