Download citation
Download citation
link to html
In the title compound, C13H9FO3, the dihedral angle between the benzene rings is 82.1 (1)°. The crystal structure is mainly stabilized by carboxylic acid dimers involving O—H...O hydrogen bonds, along with the formation of weak but highly directional inter­molecular C—H...O and C—H...F inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680502831X/ob6585sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680502831X/ob6585Isup2.hkl
Contains datablock I

CCDC reference: 287685

Key indicators

  • Single-crystal X-ray study
  • T = 290 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.069
  • wR factor = 0.159
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for O4 PLAT331_ALERT_2_B Small Average Phenyl C-C Dist. C7 -C12 1.36 Ang.
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Pesticides are widely used as pyrethroids (insecticides) in agriculture, forestry, horticulture and homes (Heudork & Angerer, 2001, and references therein). The title compund, (I), is one such compound.

Fig. 1 highlights the asymmetric unit of (I). The C5—O4—C7 bond angle is considerably widened and this eliminates the possibility of formation of an intramolecular C—H···π interaction with the H atom bonded to C6. The molecules pack via the formation of classical carboxylic acid dimers involving O—H···O hydrogen bonds (Table 2). In addition, molecules are linked via C—H···O and C—H···F interactions, forming a sheet-like structure (Fig. 2).

Experimental top

The compound (I) was supplied by Rallis India Limited. Crystals of suitable size and quality were grown by slow evaporation method from a solution of acetone at 298 K.

Refinement top

The H atom of the carboxylic group was positioned assuming an intermolecular hydrogen bond and fixed geometrically (O—H = 0.82 Å). The ring H atoms were placed in idealized position (C—H= 0.93 Å) and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% ellipsoidal probability.
[Figure 2] Fig. 2. Packing diagram of (I), highlighting O—H···O hydrogen bonds forming dimers, and C—H···O interactions and C—H···F interactions forming molecular sheets. H atoms have been omitted for clarity, except for those involved in hydrogen bonds. Intermolecular interactions are shown as dotted lines.
4-Fluoro-3-phenoxybenzoic acid top
Crystal data top
C13H9FO3F(000) = 480
Mr = 232.20Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 565 reflections
a = 16.659 (3) Åθ = 1.4–25.8°
b = 5.1494 (9) ŵ = 0.11 mm1
c = 13.916 (2) ÅT = 290 K
β = 113.821 (3)°Plate, colorless
V = 1092.0 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1914 independent reflections
Radiation source: fine-focus sealed tube1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.940, Tmax = 0.989k = 66
7407 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.4402P]
where P = (Fo2 + 2Fc2)/3
1914 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H9FO3V = 1092.0 (3) Å3
Mr = 232.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.659 (3) ŵ = 0.11 mm1
b = 5.1494 (9) ÅT = 290 K
c = 13.916 (2) Å0.30 × 0.20 × 0.10 mm
β = 113.821 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1914 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1695 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.989Rint = 0.022
7407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.25Δρmax = 0.28 e Å3
1914 reflectionsΔρmin = 0.20 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49290 (12)0.3320 (4)0.59318 (14)0.0706 (6)
O20.40843 (12)0.2783 (4)0.42436 (13)0.0709 (6)
O40.19980 (18)0.4475 (5)0.41915 (17)0.1106 (10)
F10.24893 (12)0.5720 (4)0.61568 (14)0.0885 (6)
C10.38185 (15)0.0121 (5)0.54593 (18)0.0516 (6)
C20.40555 (18)0.0644 (6)0.6491 (2)0.0663 (8)
C30.36053 (18)0.2614 (6)0.6725 (2)0.0698 (8)
C40.29289 (18)0.3780 (6)0.5937 (2)0.0636 (7)
C50.26728 (18)0.3068 (6)0.4897 (2)0.0661 (7)
C60.31261 (17)0.1106 (5)0.4661 (2)0.0601 (7)
C70.1610 (2)0.3685 (6)0.3147 (2)0.0715 (8)
C80.1761 (2)0.5100 (7)0.2420 (3)0.0793 (9)
C90.1315 (2)0.4551 (7)0.1379 (3)0.0879 (10)
C100.0726 (2)0.2621 (7)0.1068 (3)0.0887 (10)
C110.0573 (2)0.1162 (8)0.1797 (4)0.1008 (12)
C120.1023 (3)0.1682 (7)0.2856 (3)0.0955 (11)
C130.43256 (15)0.2214 (5)0.52375 (19)0.0518 (6)
H20.43930.39590.41850.106*
H2A0.45200.01730.70270.080*
H3A0.37640.31380.74170.084*
H60.29680.06030.39660.072*
H80.21690.64450.26280.095*
H90.14210.55270.08800.105*
H100.04220.22740.03560.106*
H110.01660.01820.15800.121*
H120.09290.06900.33590.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0684 (11)0.0768 (13)0.0561 (11)0.0219 (10)0.0144 (9)0.0012 (9)
O40.136 (2)0.1072 (19)0.0707 (14)0.0697 (17)0.0232 (14)0.0025 (13)
O20.0786 (13)0.0760 (14)0.0533 (11)0.0252 (10)0.0216 (9)0.0010 (9)
F10.0942 (12)0.0852 (13)0.0947 (13)0.0191 (10)0.0472 (10)0.0193 (10)
C10.0513 (13)0.0518 (14)0.0539 (14)0.0023 (11)0.0234 (11)0.0002 (11)
C20.0600 (15)0.079 (2)0.0570 (16)0.0071 (14)0.0205 (13)0.0038 (14)
C30.0683 (17)0.086 (2)0.0567 (16)0.0003 (16)0.0264 (14)0.0150 (15)
C40.0645 (16)0.0599 (17)0.0754 (19)0.0025 (13)0.0376 (15)0.0098 (14)
C50.0717 (17)0.0605 (17)0.0658 (18)0.0146 (14)0.0273 (14)0.0025 (14)
C60.0711 (16)0.0570 (16)0.0529 (14)0.0083 (13)0.0257 (13)0.0009 (12)
C70.0723 (18)0.0664 (19)0.0692 (19)0.0301 (16)0.0218 (15)0.0032 (15)
C80.0730 (19)0.073 (2)0.086 (2)0.0092 (16)0.0264 (17)0.0059 (18)
C90.104 (2)0.074 (2)0.082 (2)0.009 (2)0.034 (2)0.0045 (18)
C100.084 (2)0.082 (2)0.081 (2)0.0019 (19)0.0123 (18)0.0033 (19)
C110.084 (2)0.083 (2)0.136 (4)0.023 (2)0.045 (2)0.021 (3)
C120.125 (3)0.073 (2)0.116 (3)0.014 (2)0.077 (3)0.015 (2)
C130.0517 (13)0.0516 (14)0.0505 (14)0.0036 (11)0.0190 (11)0.0001 (11)
Geometric parameters (Å, º) top
O2—C131.308 (3)C2—H2A0.9300
O2—H20.8200O4—C71.392 (4)
O1—C131.218 (3)C7—C81.351 (4)
C1—C21.384 (4)C7—C121.365 (5)
C1—C61.389 (3)C8—C91.364 (5)
C1—C131.477 (3)C8—H80.9300
F1—C41.345 (3)C11—C101.366 (5)
C4—C31.355 (4)C11—C121.384 (5)
C4—C51.383 (4)C11—H110.9300
C6—C51.378 (4)C9—C101.339 (5)
C6—H60.9300C9—H90.9300
C5—O41.364 (3)C10—H100.9300
C3—C21.376 (4)C12—H120.9300
C3—H3A0.9300
C13—O2—H2109.5C1—C2—H2A120.0
C2—C1—C6119.8 (2)C5—O4—C7119.8 (2)
C2—C1—C13118.5 (2)C8—C7—C12120.9 (3)
C6—C1—C13121.7 (2)C8—C7—O4118.4 (3)
O1—C13—O2122.5 (2)C12—C7—O4120.3 (3)
O1—C13—C1122.3 (2)C7—C8—C9119.8 (3)
O2—C13—C1115.3 (2)C7—C8—H8120.1
F1—C4—C3119.7 (3)C9—C8—H8120.1
F1—C4—C5118.0 (3)C10—C11—C12120.0 (3)
C3—C4—C5122.3 (3)C10—C11—H11120.0
C5—C6—C1120.1 (2)C12—C11—H11120.0
C5—C6—H6120.0C10—C9—C8120.7 (3)
C1—C6—H6120.0C10—C9—H9119.6
O4—C5—C6126.1 (3)C8—C9—H9119.6
O4—C5—C4115.4 (2)C9—C10—C11120.0 (3)
C6—C5—C4118.5 (3)C9—C10—H10120.0
C4—C3—C2119.3 (3)C11—C10—H10120.0
C4—C3—H3A120.4C7—C12—C11118.5 (3)
C2—C3—H3A120.4C7—C12—H12120.7
C3—C2—C1120.1 (3)C11—C12—H12120.7
C3—C2—H2A120.0
C2—C1—C13—O11.7 (4)C6—C1—C2—C30.1 (4)
C6—C1—C13—O1179.3 (2)C13—C1—C2—C3179.1 (2)
C2—C1—C13—O2177.9 (2)C6—C5—O4—C711.2 (5)
C6—C1—C13—O21.1 (3)C4—C5—O4—C7171.0 (3)
C2—C1—C6—C50.5 (4)C5—O4—C7—C8108.3 (4)
C13—C1—C6—C5179.4 (2)C5—O4—C7—C1278.0 (4)
C1—C6—C5—O4178.2 (3)C12—C7—C8—C90.9 (5)
C1—C6—C5—C40.5 (4)O4—C7—C8—C9172.7 (3)
F1—C4—C5—O41.2 (4)C7—C8—C9—C100.0 (5)
C3—C4—C5—O4178.1 (3)C8—C9—C10—C110.6 (6)
F1—C4—C5—C6179.1 (2)C12—C11—C10—C90.2 (6)
C3—C4—C5—C60.2 (5)C8—C7—C12—C111.2 (5)
F1—C4—C3—C2179.5 (2)O4—C7—C12—C11172.2 (3)
C5—C4—C3—C20.2 (5)C10—C11—C12—C70.7 (5)
C4—C3—C2—C10.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.852.667 (3)178
C3—H3A···O1ii0.932.563.224 (3)129
C9—H9···F1iii0.932.553.216 (4)129
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9FO3
Mr232.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)16.659 (3), 5.1494 (9), 13.916 (2)
β (°) 113.821 (3)
V3)1092.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7407, 1914, 1695
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.159, 1.25
No. of reflections1914
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O2—C131.308 (3)F1—C41.345 (3)
O1—C131.218 (3)C5—O41.364 (3)
C5—O4—C7119.8 (2)
C2—C1—C13—O11.7 (4)C5—O4—C7—C1278.0 (4)
C6—C5—O4—C711.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.852.667 (3)178
C3—H3A···O1ii0.932.563.224 (3)129
C9—H9···F1iii0.932.553.216 (4)129
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds