Download citation
Download citation
link to html
In the title compound, C29H22Cl2N2O2, the piperidinone ring adopts its usual twist–boat conformation. The crystal packing is stabilized by a three-dimensional network of C—H...O hydrogen bonds involving the nitroso and carbonyl O atoms. No significant C—H...π, π–π and Cl...Cl inter­actions are observed but there are weak Cl...Cl interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029569/rz6112sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029569/rz6112Isup2.hkl
Contains datablock I

CCDC reference: 287698

Key indicators

  • Single-crystal X-ray study
  • T = 105 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.034
  • wR factor = 0.098
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The piperidine ring is a distinct structural feature of a variety of alkaloid natural products and drug candidates. Watson et al. (2000) observed that during the past decade there were thousands of piperidine compounds mentioned in clinical and preclinical studies. Piperidinones, though relatively less prominent, have also been regarded as precursors of a host of biologically active compounds and natural alkaloids, prior to their conversion to piperidines. This paper reports the structure of the title compound, (I), a nitroso-piperidinone derivative, namely 2,6-bis(2-chloroyphenyl)-1-nitroso-3,5-diphenylpiperidin-4-one. Many nitroso–amines are carcinogenic (Magee et al., 1976) and certain N-nitroso–ureas are antitumour agents and antibiotics (Durand, 1989; Fujimoto et al., 1991). Thus, combining these moieties together may lead to many useful biologically active compounds. In addition to their possible biological significance, accurate X-ray crystallographic investigations on a variety of nitroso–piperidinone derivatives with various substituted phenyl rings at the 2-, 3-, 5- and 6-positions have been carried out in our laboratory with the aim of obtaining some information on the effect of substituents on the conformation of individual molecules and also on the crystal-packing features of these compounds. Recently, in our laboratory, we have elucidated the crystal structures of a few nitroso–piperidinone derivatives with varying substituted benzene rings at the 2- and 6-positions and unsubstituted phenyl rings at the 3- and 5-positions, namely the 4-methoxy (PIP1; Natarajan et al., 2005), 2-methyl (PIP2; Suresh et al., 2005a) and 2-methoxy (PIP3; Suresh et al., 2005b) analogues (I).

The molecular structure of compound (I) is illustrated in Fig. 1. The piperidinone ring adopts a twist–boat conformation, as observed in PIP1, PIP2 and PIP3. Atoms C2 and C5 deviate by 0.529 (2) and 0.499 (2) Å, respectively, from the least-squares plane defined by the other atoms (N1, C3, C4 and C6). The corresponding values are 0.592 (2) and 0.492 (2) Å for PIP1, 0.627 (1) and 0.560 (1) Å for PIP2, and 0.556 (1), 0.547 (1) Å for PIP3. The twist–boat conformation is also evident from the values observed for the torsion angles of the piperidinone ring (Table 1). The nitroso O atom is syn to the neighbouring axial chlorophenyl at C6 [C6—N1—N2—O1 = 6.04 (17)°]. The orientation of the nitroso O atom remains relatively unperturbed by the effect of the substituent. The value of this torsion angle is 5.3 (2)° for PIP1, −5.8 (1)° for PIP2 and 5.2 (1)° for PIP3. This may be attributed to the fact that the nitroso O atom encounters large steric effects due to the bulky substituents at the neighbouring 2- and 6-positions of the piperidinone ring. The configuration of the aryl rings at the 2- and 3- (equatorial, C21—C2—C3—C31 = −63.4°) and those at the 5- and 6-positions (axial, C61—C6—C5—C51 = 158.2°) are similar to those observed in PIP3, but are different from those of PIP1 and PIP2 where the aryl rings at the 2- and 3-positions are axially oriented and those at the 5- and 6-positions are equatorially oriented. The observations concerning the conformation of (I) agree well with the results of 1H NMR studies of piperidinone in solution (Alex Raja & Perumal, 2004) and establish that compound (I) adopts the same conformation in both solution and the solid state.

A sterically favoured short intramolecular distance is observed (H2···Cl1 = 2.544 Å). The crystal packing is stabilized by a three-dimensional network of C—H···O hydrogen bonds in which the nitroso and carbonyl O atoms participate as acceptors (Table 2 and Fig. 2). A weak Cl···Cl contact [Cl1···Cl2i = 3.696 (1) Å; symmetry code: (i) −x, +y − 1/2, −z + 1/2] is also observed. No significant C—H···.π or ππ interactions are present. Though the formation of centrosmmetric dimers seems an ubiquitous feature in the crystal packing of these compounds, the choice between interconnected layers and columns stabilized by van der Waals interactions among them could not be attributed to the change and nature of the substituents.

Experimental top

A mixture of 2,6-bis(2-chlorophenyl)-3,5-diphenylpiperidin-4-one (0.75 g, 0.0015 mol) and concentrated HCl (0.4 ml) was dissolvedin a 1:1 e thanol–water mixture (20 ml). The temperature of the solution was kept at 338–343 K and while stirring, a solution of NaNO2 (0.21 g, 0.003 mol) in a 1:1 e thanol–water mixture (15 ml) was added dropwise over a period of 1 h. The heating and stirring were continued for another 2 h. The reaction mixture was extracted four times with ether (100 ml) and the extracts were washed with water several times. The combined ether layer was dried over anhydrous sodium bisulfate. After removal of the ether, the crude product was recrystallized twice from ethyl acetate to give colourless crystals (yield: 68%, m.p. 493 K).

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-nmbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the three-dimensional network of hydrogen bonding (dashed lines) within the crystal. C and H atoms which do not take part in hydrogen bonding have been omitted for clarity.
2,6-Bis(2-chlorophenyl)-1-nitroso-3,5-diphenylpiperidin-4-one top
Crystal data top
C29H22Cl2N2O2F(000) = 1040
Mr = 501.39Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3344 reflections
a = 10.5812 (3) Åθ = 2–23°
b = 12.9766 (4) ŵ = 0.30 mm1
c = 17.5935 (5) ÅT = 105 K
β = 95.863 (1)°Needle, colourless
V = 2403.09 (12) Å30.28 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5972 independent reflections
Radiation source: fine-focus sealed tube5061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1314
Tmin = 0.95, Tmax = 0.96k = 1717
30319 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.0027P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C29H22Cl2N2O2V = 2403.09 (12) Å3
Mr = 501.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5812 (3) ŵ = 0.30 mm1
b = 12.9766 (4) ÅT = 105 K
c = 17.5935 (5) Å0.28 × 0.17 × 0.14 mm
β = 95.863 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5061 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.036
30319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
5972 reflectionsΔρmin = 0.26 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35419 (3)0.17177 (3)0.170940 (18)0.02837 (9)
Cl20.05881 (4)0.53122 (3)0.39363 (2)0.03962 (11)
O10.09933 (9)0.44604 (8)0.17883 (6)0.0277 (2)
O20.39941 (9)0.41054 (8)0.48952 (5)0.0256 (2)
N10.25167 (10)0.40901 (8)0.26596 (6)0.0192 (2)
C40.35635 (12)0.39987 (9)0.42367 (7)0.0194 (2)
C610.15895 (11)0.55918 (10)0.32579 (7)0.0207 (2)
N20.20701 (11)0.40881 (9)0.19229 (6)0.0230 (2)
C510.17659 (11)0.27849 (10)0.40780 (7)0.0202 (2)
C310.56092 (11)0.32645 (10)0.38349 (7)0.0203 (2)
C30.44378 (11)0.39175 (9)0.35936 (7)0.0184 (2)
H30.47360.46150.34950.022*
C220.44631 (12)0.28185 (10)0.16123 (7)0.0224 (2)
C210.45077 (11)0.35912 (10)0.21670 (7)0.0193 (2)
C660.24374 (12)0.62330 (11)0.29285 (8)0.0246 (3)
H660.31290.59430.27210.030*
C50.21300 (11)0.39241 (10)0.40171 (7)0.0198 (2)
H50.17140.43000.44060.024*
C520.12862 (12)0.21917 (11)0.34527 (7)0.0250 (3)
H520.11770.24870.29690.030*
C20.37289 (11)0.35206 (9)0.28442 (7)0.0180 (2)
H20.35210.27940.29170.022*
C620.05666 (12)0.60672 (11)0.35628 (8)0.0245 (3)
C60.16914 (11)0.44175 (10)0.32390 (7)0.0198 (2)
H60.08390.41510.30790.024*
C260.52472 (13)0.44584 (11)0.20560 (8)0.0248 (3)
H260.53040.49820.24190.030*
C630.04039 (14)0.71293 (12)0.35575 (8)0.0292 (3)
H630.02750.74240.37750.035*
C550.16119 (14)0.12902 (12)0.48906 (8)0.0300 (3)
H550.17270.09900.53730.036*
C250.59010 (14)0.45542 (12)0.14123 (8)0.0307 (3)
H250.63890.51380.13480.037*
C350.66844 (15)0.16147 (12)0.39667 (8)0.0336 (3)
H350.66700.09040.38980.040*
C360.55984 (14)0.21969 (11)0.37498 (8)0.0289 (3)
H360.48590.18690.35460.035*
C650.22740 (13)0.72966 (11)0.29032 (9)0.0291 (3)
H650.28430.77080.26700.035*
C560.19260 (13)0.23211 (11)0.47979 (7)0.0262 (3)
H560.22460.27060.52200.031*
C530.09692 (13)0.11618 (11)0.35467 (8)0.0284 (3)
H530.06490.07750.31260.034*
C640.12644 (14)0.77438 (11)0.32245 (9)0.0299 (3)
H640.11650.84560.32160.036*
C320.67132 (14)0.37360 (12)0.41636 (9)0.0341 (3)
H320.67360.44470.42280.041*
C230.51076 (14)0.29039 (12)0.09652 (8)0.0297 (3)
H230.50590.23810.06020.036*
C340.77803 (14)0.20924 (14)0.42839 (9)0.0378 (4)
H340.85090.17080.44210.045*
C540.11272 (13)0.07086 (11)0.42648 (8)0.0287 (3)
H540.09100.00210.43260.034*
C240.58237 (14)0.37804 (13)0.08689 (8)0.0337 (3)
H240.62540.38480.04360.040*
C330.77852 (15)0.31468 (15)0.43962 (11)0.0450 (4)
H330.85110.34660.46290.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03596 (18)0.02394 (16)0.02450 (16)0.00332 (12)0.00041 (12)0.00469 (12)
Cl20.02990 (18)0.0404 (2)0.0524 (2)0.00942 (14)0.02263 (16)0.01542 (17)
O10.0239 (5)0.0323 (5)0.0257 (5)0.0067 (4)0.0035 (4)0.0002 (4)
O20.0273 (5)0.0310 (5)0.0182 (4)0.0030 (4)0.0010 (3)0.0021 (4)
N10.0186 (5)0.0226 (5)0.0164 (5)0.0031 (4)0.0015 (4)0.0002 (4)
C40.0222 (6)0.0165 (5)0.0194 (5)0.0003 (4)0.0023 (4)0.0002 (4)
C610.0193 (5)0.0236 (6)0.0188 (5)0.0029 (4)0.0004 (4)0.0005 (5)
N20.0247 (5)0.0250 (5)0.0185 (5)0.0029 (4)0.0011 (4)0.0004 (4)
C510.0168 (5)0.0234 (6)0.0207 (6)0.0003 (4)0.0032 (4)0.0013 (5)
C310.0190 (6)0.0256 (6)0.0165 (5)0.0017 (4)0.0026 (4)0.0013 (4)
C30.0188 (5)0.0191 (5)0.0171 (5)0.0003 (4)0.0013 (4)0.0007 (4)
C220.0211 (6)0.0252 (6)0.0203 (6)0.0019 (5)0.0004 (4)0.0007 (5)
C210.0182 (5)0.0224 (6)0.0172 (5)0.0028 (4)0.0016 (4)0.0010 (4)
C660.0207 (6)0.0260 (6)0.0275 (6)0.0009 (5)0.0043 (5)0.0008 (5)
C50.0199 (5)0.0226 (6)0.0172 (5)0.0013 (4)0.0036 (4)0.0000 (4)
C520.0247 (6)0.0306 (7)0.0194 (6)0.0047 (5)0.0001 (5)0.0021 (5)
C20.0173 (5)0.0195 (5)0.0173 (5)0.0016 (4)0.0020 (4)0.0002 (4)
C620.0217 (6)0.0290 (7)0.0235 (6)0.0038 (5)0.0052 (5)0.0034 (5)
C60.0181 (5)0.0226 (6)0.0189 (5)0.0014 (4)0.0033 (4)0.0009 (4)
C260.0257 (6)0.0246 (6)0.0249 (6)0.0003 (5)0.0067 (5)0.0009 (5)
C630.0287 (7)0.0315 (7)0.0274 (7)0.0098 (5)0.0030 (5)0.0028 (5)
C550.0343 (7)0.0322 (7)0.0232 (6)0.0039 (6)0.0021 (5)0.0066 (5)
C250.0286 (7)0.0336 (7)0.0313 (7)0.0019 (6)0.0107 (5)0.0047 (6)
C350.0406 (8)0.0336 (8)0.0263 (7)0.0151 (6)0.0026 (6)0.0007 (6)
C360.0293 (7)0.0273 (7)0.0285 (7)0.0039 (5)0.0052 (5)0.0027 (5)
C650.0253 (6)0.0260 (7)0.0356 (7)0.0037 (5)0.0018 (5)0.0000 (6)
C560.0297 (7)0.0300 (7)0.0186 (6)0.0037 (5)0.0012 (5)0.0002 (5)
C530.0289 (7)0.0310 (7)0.0250 (6)0.0084 (5)0.0011 (5)0.0024 (5)
C640.0322 (7)0.0227 (6)0.0337 (7)0.0030 (5)0.0021 (6)0.0035 (5)
C320.0254 (7)0.0327 (7)0.0423 (8)0.0049 (6)0.0057 (6)0.0058 (6)
C230.0299 (7)0.0387 (8)0.0208 (6)0.0043 (6)0.0036 (5)0.0058 (5)
C340.0236 (7)0.0527 (10)0.0381 (8)0.0133 (6)0.0074 (6)0.0178 (7)
C540.0294 (7)0.0263 (7)0.0305 (7)0.0052 (5)0.0046 (5)0.0029 (5)
C240.0316 (7)0.0475 (9)0.0238 (7)0.0020 (6)0.0113 (5)0.0020 (6)
C330.0221 (7)0.0527 (10)0.0575 (11)0.0065 (7)0.0088 (7)0.0188 (8)
Geometric parameters (Å, º) top
Cl1—C221.7476 (14)C62—C631.389 (2)
Cl2—C621.7460 (14)C6—H60.9800
O1—N21.2379 (14)C26—C251.3916 (18)
O2—C41.2087 (15)C26—H260.9300
N1—N21.3336 (14)C63—C641.385 (2)
N1—C61.4710 (15)C63—H630.9300
N1—C21.4872 (15)C55—C541.389 (2)
C4—C51.5296 (17)C55—C561.392 (2)
C4—C31.5365 (16)C55—H550.9300
C61—C661.3926 (18)C25—C241.383 (2)
C61—C621.3994 (17)C25—H250.9300
C61—C61.5283 (17)C35—C341.381 (2)
C51—C521.3951 (18)C35—C361.395 (2)
C51—C561.3969 (18)C35—H350.9300
C51—C51.5342 (17)C36—H360.9300
C31—C321.3912 (19)C65—C641.386 (2)
C31—C361.3934 (19)C65—H650.9300
C31—C31.5255 (17)C56—H560.9300
C3—C21.5376 (16)C53—C541.388 (2)
C3—H30.9800C53—H530.9300
C22—C231.3900 (19)C64—H640.9300
C22—C211.3966 (18)C32—C331.394 (2)
C21—C261.3957 (18)C32—H320.9300
C21—C21.5190 (16)C23—C241.387 (2)
C66—C651.391 (2)C23—H230.9300
C66—H660.9300C34—C331.382 (3)
C5—C61.5394 (17)C34—H340.9300
C5—H50.9800C54—H540.9300
C52—C531.392 (2)C24—H240.9300
C52—H520.9300C33—H330.9300
C2—H20.9800
N2—N1—C6119.84 (10)N1—C6—H6107.1
N2—N1—C2115.05 (10)C61—C6—H6107.1
C6—N1—C2123.51 (10)C5—C6—H6107.1
O2—C4—C5121.09 (11)C25—C26—C21121.22 (13)
O2—C4—C3121.15 (11)C25—C26—H26119.4
C5—C4—C3117.76 (10)C21—C26—H26119.4
C66—C61—C62116.91 (12)C64—C63—C62119.21 (13)
C66—C61—C6122.46 (11)C64—C63—H63120.4
C62—C61—C6120.46 (11)C62—C63—H63120.4
O1—N2—N1114.39 (10)C54—C55—C56120.16 (13)
C52—C51—C56118.55 (12)C54—C55—H55119.9
C52—C51—C5123.39 (11)C56—C55—H55119.9
C56—C51—C5118.06 (11)C24—C25—C26119.90 (14)
C32—C31—C36118.63 (13)C24—C25—H25120.0
C32—C31—C3119.68 (12)C26—C25—H25120.0
C36—C31—C3121.67 (11)C34—C35—C36120.09 (15)
C31—C3—C4111.49 (10)C34—C35—H35120.0
C31—C3—C2111.34 (10)C36—C35—H35120.0
C4—C3—C2112.13 (10)C31—C36—C35120.76 (14)
C31—C3—H3107.2C31—C36—H36119.6
C4—C3—H3107.2C35—C36—H36119.6
C2—C3—H3107.2C64—C65—C66120.05 (13)
C23—C22—C21122.05 (13)C64—C65—H65120.0
C23—C22—Cl1118.06 (10)C66—C65—H65120.0
C21—C22—Cl1119.87 (10)C55—C56—C51120.80 (12)
C26—C21—C22117.42 (11)C55—C56—H56119.6
C26—C21—C2121.01 (11)C51—C56—H56119.6
C22—C21—C2121.50 (11)C54—C53—C52120.46 (13)
C65—C66—C61121.52 (12)C54—C53—H53119.8
C65—C66—H66119.2C52—C53—H53119.8
C61—C66—H66119.2C63—C64—C65119.94 (13)
C4—C5—C51107.03 (10)C63—C64—H64120.0
C4—C5—C6113.54 (10)C65—C64—H64120.0
C51—C5—C6114.07 (10)C31—C32—C33120.28 (15)
C4—C5—H5107.3C31—C32—H32119.9
C51—C5—H5107.3C33—C32—H32119.9
C6—C5—H5107.3C24—C23—C22119.04 (13)
C53—C52—C51120.58 (12)C24—C23—H23120.5
C53—C52—H52119.7C22—C23—H23120.5
C51—C52—H52119.7C35—C34—C33119.52 (14)
N1—C2—C21108.88 (9)C35—C34—H34120.2
N1—C2—C3110.80 (9)C33—C34—H34120.2
C21—C2—C3113.34 (10)C53—C54—C55119.45 (13)
N1—C2—H2107.9C53—C54—H54120.3
C21—C2—H2107.9C55—C54—H54120.3
C3—C2—H2107.9C25—C24—C23120.36 (13)
C63—C62—C61122.35 (13)C25—C24—H24119.8
C63—C62—Cl2117.93 (10)C23—C24—H24119.8
C61—C62—Cl2119.69 (11)C34—C33—C32120.65 (15)
N1—C6—C61110.57 (10)C34—C33—H33119.7
N1—C6—C5110.47 (10)C32—C33—H33119.7
C61—C6—C5114.26 (10)
C6—N1—N2—O16.04 (17)C66—C61—C62—Cl2176.33 (10)
C2—N1—N2—O1172.10 (10)C6—C61—C62—Cl20.91 (17)
C32—C31—C3—C491.81 (14)N2—N1—C6—C6177.88 (14)
C36—C31—C3—C486.81 (14)C2—N1—C6—C61117.29 (12)
C32—C31—C3—C2142.14 (12)N2—N1—C6—C5154.64 (11)
C36—C31—C3—C239.23 (16)C2—N1—C6—C510.19 (16)
O2—C4—C3—C3140.17 (16)C66—C61—C6—N116.44 (16)
C5—C4—C3—C31138.96 (11)C62—C61—C6—N1158.72 (11)
O2—C4—C3—C2165.78 (11)C66—C61—C6—C5108.93 (13)
C5—C4—C3—C213.35 (15)C62—C61—C6—C575.91 (15)
C23—C22—C21—C261.01 (19)C4—C5—C6—N146.62 (14)
Cl1—C22—C21—C26179.30 (10)C51—C5—C6—N176.37 (12)
C23—C22—C21—C2175.84 (12)C4—C5—C6—C6178.80 (13)
Cl1—C22—C21—C22.45 (16)C51—C5—C6—C61158.20 (10)
C62—C61—C66—C650.07 (19)C22—C21—C26—C250.8 (2)
C6—C61—C66—C65175.25 (12)C2—C21—C26—C25176.05 (12)
O2—C4—C5—C5187.55 (14)C61—C62—C63—C641.5 (2)
C3—C4—C5—C5191.58 (12)Cl2—C62—C63—C64176.26 (11)
O2—C4—C5—C6145.67 (12)C21—C26—C25—C240.0 (2)
C3—C4—C5—C635.20 (15)C32—C31—C36—C352.1 (2)
C52—C51—C5—C4115.56 (13)C3—C31—C36—C35179.31 (12)
C56—C51—C5—C464.38 (14)C34—C35—C36—C311.3 (2)
C52—C51—C5—C610.91 (16)C61—C66—C65—C641.4 (2)
C56—C51—C5—C6169.15 (11)C54—C55—C56—C510.3 (2)
C56—C51—C52—C530.30 (19)C52—C51—C56—C550.1 (2)
C5—C51—C52—C53179.76 (12)C5—C51—C56—C55179.94 (12)
N2—N1—C2—C2131.29 (14)C51—C52—C53—C540.1 (2)
C6—N1—C2—C21163.22 (11)C62—C63—C64—C650.1 (2)
N2—N1—C2—C3156.59 (10)C66—C65—C64—C631.3 (2)
C6—N1—C2—C337.93 (15)C36—C31—C32—C330.5 (2)
C26—C21—C2—N181.88 (14)C3—C31—C32—C33179.13 (14)
C22—C21—C2—N194.85 (13)C21—C22—C23—C240.4 (2)
C26—C21—C2—C341.92 (16)Cl1—C22—C23—C24178.72 (11)
C22—C21—C2—C3141.34 (12)C36—C35—C34—C331.1 (2)
C31—C3—C2—N1173.84 (10)C52—C53—C54—C550.3 (2)
C4—C3—C2—N148.15 (13)C56—C55—C54—C530.5 (2)
C31—C3—C2—C2163.41 (13)C26—C25—C24—C230.6 (2)
C4—C3—C2—C21170.90 (10)C22—C23—C24—C250.4 (2)
C66—C61—C62—C631.4 (2)C35—C34—C33—C322.7 (3)
C6—C61—C62—C63176.78 (12)C31—C32—C33—C341.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O1i0.932.453.0470 (17)122
C32—H32···O2ii0.932.603.377 (2)142
C23—H23···O2iii0.932.503.3583 (18)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC29H22Cl2N2O2
Mr501.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)105
a, b, c (Å)10.5812 (3), 12.9766 (4), 17.5935 (5)
β (°) 95.863 (1)
V3)2403.09 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.28 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
30319, 5972, 5061
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.05
No. of reflections5972
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected torsion angles (º) top
C6—N1—N2—O16.04 (17)C4—C3—C2—N148.15 (13)
C2—N1—N2—O1172.10 (10)C31—C3—C2—C2163.41 (13)
C5—C4—C3—C213.35 (15)C2—N1—C6—C510.19 (16)
C3—C4—C5—C635.20 (15)C4—C5—C6—N146.62 (14)
C6—N1—C2—C337.93 (15)C51—C5—C6—C61158.20 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O1i0.932.453.0470 (17)122
C32—H32···O2ii0.932.603.377 (2)142
C23—H23···O2iii0.932.503.3583 (18)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds