Download citation
Download citation
link to html
The title compound, [Ni(C3H4N2)5(H2O)](C4H2Br2O4), consists of NiII complex cations and dibromo­succinate anions. The Ni atom, water O atom and one imidazole N atom of the complex cation lie on a twofold axis. The anion lies on an inversion centre. The crystal packing is reinforced by O—H...O and N—H...O hydrogen bonds, but there are no π–π stacking inter­actions even though the complex contains five aromatic imidazole rings. The compound is isostructural with its cobalt analogue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030084/rz6115sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030084/rz6115Isup2.hkl
Contains datablock I

CCDC reference: 287700

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in main residue
  • R factor = 0.050
  • wR factor = 0.155
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C7
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 8
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As ππ stacking plays an important role in some biological processes (Deisenhofer & Michel, 1989), the nature of these stacking interactions has attracted our attention. A series of metal complexes incorporating different aromatic ligands has been prepared and their structures determined to compare the effect of the size of the aromatic ring on ππ stacking. The research results show that not all complexes containing aromatic rings display ππ stacking interactions. The title NiII complex, (I), with imidazole ligands and dibromosuccinate anions, has been prepared, but its crystal structure shows no ππ stacking.

The crystal structure of (I) consists of NiII complex cations and dibromosuccinate anions (DBrS), as shown in Fig. 1. The compound is isostructural with the corresponding CoII complex (Li et al., 2004). The NiII atom, located on a twofold axis, is coordinated by five imidazole ligands and one water molecule in an octahedral geometry. The coordinated water O atom and the N5-containing imidazole ligand are also located on the twofold axis. Thus, the N5-imidazole is disordered, with atoms N6 and C10 occupying the same site with 0.5 occupancy each. The N5-imidazole is linked to the carboxyl group of DBrS via a disordered N6—H11···O1i or C10—H11···O1i hydrogen bond [Table 2; symmetry code: (i) x, 1 + y, z].

The complete DBrS anion lies on an inversion centre. Each carboxyl group participates in similar hydrogen-bond linkages with the N2ii-imidazole, the N4iii-imidazole and the O3 water molecule [symmetry codes: (ii) 3/2 − x, 1/2 + y, 1/2 − z; (iii) 3/2 − x, 3/2 − y, 1 − z], as shown in Fig. 2. No ππ stacking is observed in (I). The nearest distance between imidazole rings of neighbouring complex cations is 3.284 (6) Å (N4···N4iii; Fig.3).

Experimental top

An ethanol–water solution (5 ml, 1:1) of NiCl2·6H2O (0.24 g, 1 mmol) was mixed with an aqueous solution (4 ml) containing DBrSH2 (0.55 g, 2 mmol) and Na2CO3 (0.21 g, 2 mmol). The mixture was refluxed for 4 h and filtered. After cooling to room temperature, imidazole (0.20 g, 3 mmol) was added to the filtrate and green single crystals of (I) were obtained after 4 d.

Refinement top

The water H atoms were located in a difference Fourier map and included in the final cycles of refinement with fixed positional and displacement parameters, with Uiso(H) = 0.05 Å2. Other H atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) or 0.98 Å (methine), and included in the final cycles of refinement in the riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. The atomic label of N6/C10 indicates two different atoms occupying the same site within the N5-imidazole ligand. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 − x, y, 1/2 − z; (ii) 1 − x, 1 + y, 1/2 − z; (iii) x, 1 + y, z.]
[Figure 2] Fig. 2. The crystal packing for (I). Dashed lines indicate the hydrogen bonding between imidazole ligands and carboxyl groups. [Symmetry codes: (i) 3/2 − x, −1/2 + y, 1/2 − z; (ii) x, 1 + y, −1/2 − z.]
[Figure 3] Fig. 3. The nearest contact between imidazole rings of neighbouring complex cations of (I) [symmetry code: (i) 3/2 − x, 3/2 − y, 1 − z].
Aquapentakis(1H-imidazole-κN3)nickel(II) dibromosuccinate top
Crystal data top
[Ni(C3H4N2)5(H2O)](C4H2Br2O4)F(000) = 1384
Mr = 690.97Dx = 1.702 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 175 reflections
a = 15.8702 (11) Åθ = 2.5–24.5°
b = 12.9262 (11) ŵ = 3.73 mm1
c = 13.9436 (11) ÅT = 298 K
β = 109.468 (3)°Prism, green
V = 2696.9 (4) Å30.36 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube2048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2020
Tmin = 0.355, Tmax = 0.440k = 1616
5513 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0964P)2]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ni(C3H4N2)5(H2O)](C4H2Br2O4)V = 2696.9 (4) Å3
Mr = 690.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.8702 (11) ŵ = 3.73 mm1
b = 12.9262 (11) ÅT = 298 K
c = 13.9436 (11) Å0.36 × 0.24 × 0.22 mm
β = 109.468 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2048 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.440Rint = 0.020
5513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
3000 reflectionsΔρmin = 0.66 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.40093 (4)0.44731 (4)0.34294 (4)0.0676 (2)
O20.6046 (2)0.5643 (3)0.4011 (3)0.0715 (10)
C80.5087 (4)0.4605 (5)0.4681 (4)0.0739 (15)
H90.51700.39470.50500.089*
C70.5897 (3)0.4772 (5)0.4322 (4)0.0761 (14)
O10.6357 (5)0.3984 (5)0.4389 (5)0.156 (3)
Ni0.50000.85930 (5)0.25000.0443 (2)
N10.6115 (2)0.8477 (3)0.1917 (3)0.0486 (8)
N30.5938 (2)0.8538 (2)0.4021 (3)0.0454 (8)
N40.7211 (3)0.8630 (3)0.5330 (3)0.0576 (10)
H70.77620.87540.56710.069*
O30.50000.6904 (3)0.25000.0551 (11)
C40.5809 (3)0.8174 (3)0.4908 (3)0.0498 (10)
H50.52690.79340.49460.060*
C60.6804 (3)0.8796 (4)0.4338 (4)0.0537 (11)
H80.70920.90640.39110.064*
C10.6512 (3)0.7563 (4)0.1787 (4)0.0635 (13)
H10.63600.69090.19570.076*
C50.6584 (3)0.8222 (4)0.5704 (4)0.0595 (12)
H60.66730.80190.63700.071*
N20.7169 (3)0.8790 (4)0.1244 (3)0.0706 (12)
H30.75110.91240.09870.085*
C30.6544 (4)0.9210 (4)0.1590 (4)0.0686 (14)
H40.64290.99150.15980.082*
C20.7163 (3)0.7765 (5)0.1373 (4)0.0735 (15)
H20.75290.72830.12110.088*
N50.50001.0308 (4)0.25000.0509 (12)
C90.5437 (3)1.0948 (4)0.3265 (4)0.0614 (12)
C100.5281 (3)1.1952 (3)0.2999 (4)0.065 (15)0.50
N60.5281 (3)1.1952 (3)0.2999 (4)0.066 (12)0.50
H120.52600.64140.29860.050*
H100.57201.07300.39750.050*
H110.55081.24210.34170.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0756 (4)0.0682 (4)0.0577 (4)0.0106 (2)0.0205 (3)0.0019 (2)
O20.0562 (19)0.086 (3)0.065 (2)0.0171 (17)0.0102 (17)0.0161 (18)
C80.069 (3)0.096 (4)0.068 (4)0.006 (3)0.037 (3)0.004 (3)
C70.068 (3)0.087 (4)0.061 (3)0.027 (3)0.046 (3)0.019 (3)
O10.210 (6)0.152 (5)0.169 (5)0.130 (5)0.147 (5)0.098 (4)
Ni0.0462 (4)0.0377 (4)0.0537 (5)0.0000.0227 (4)0.000
N10.0452 (18)0.052 (2)0.054 (2)0.0021 (15)0.0223 (16)0.0002 (17)
N30.0457 (18)0.0410 (18)0.052 (2)0.0021 (14)0.0198 (16)0.0029 (15)
N40.0483 (19)0.056 (2)0.064 (3)0.0006 (17)0.0119 (19)0.0079 (19)
O30.061 (2)0.034 (2)0.066 (3)0.0000.016 (2)0.000
C40.051 (2)0.047 (2)0.053 (3)0.0112 (19)0.020 (2)0.0035 (19)
C60.049 (2)0.056 (3)0.061 (3)0.0015 (19)0.024 (2)0.003 (2)
C10.057 (3)0.052 (3)0.087 (4)0.002 (2)0.032 (3)0.010 (3)
C50.073 (3)0.056 (3)0.048 (3)0.007 (2)0.017 (2)0.006 (2)
N20.062 (2)0.097 (4)0.068 (3)0.004 (2)0.042 (2)0.012 (3)
C30.071 (3)0.063 (3)0.086 (4)0.007 (2)0.045 (3)0.015 (3)
C20.062 (3)0.087 (4)0.078 (4)0.015 (3)0.033 (3)0.012 (3)
N50.059 (3)0.034 (2)0.068 (3)0.0000.032 (3)0.000
C90.075 (3)0.043 (2)0.069 (3)0.002 (2)0.028 (3)0.006 (2)
C100.10 (3)0.030 (13)0.09 (3)0.014 (14)0.07 (2)0.002 (13)
N60.066 (16)0.066 (17)0.07 (2)0.000 (12)0.022 (13)0.000 (13)
Geometric parameters (Å, º) top
Br—C82.002 (6)O3—H120.9200
O2—C71.257 (6)C4—C51.355 (7)
C8—C8i1.440 (10)C4—H50.9300
C8—C71.543 (7)C6—H80.9300
C8—H90.9800C1—C21.367 (7)
C7—O11.239 (6)C1—H10.9300
Ni—N32.147 (3)C5—H60.9300
Ni—N3ii2.147 (3)N2—C21.338 (7)
Ni—O32.183 (4)N2—C31.352 (7)
Ni—N1ii2.185 (3)N2—H30.8600
Ni—N12.185 (3)C3—H40.9300
Ni—N52.217 (5)C2—H20.9300
N1—C31.333 (6)N5—C91.346 (6)
N1—C11.379 (5)N5—C9ii1.346 (6)
N3—C61.338 (5)C9—C101.350 (7)
N3—C41.402 (5)C9—H100.9800
N4—C61.335 (6)C10—N6ii1.379 (10)
N4—C51.373 (6)C10—C10ii1.379 (10)
N4—H70.8600C10—H110.835 (5)
C8i—C8—C7116.9 (6)Ni—O3—H12134.00
C8i—C8—Br108.4 (5)C5—C4—N3110.4 (4)
C7—C8—Br107.0 (4)C5—C4—H5124.8
C8i—C8—H9108.1N3—C4—H5124.8
C7—C8—H9108.1N4—C6—N3113.0 (4)
Br—C8—H9108.1N4—C6—H8123.5
O1—C7—O2126.1 (5)N3—C6—H8123.5
O1—C7—C8113.2 (6)C2—C1—N1109.5 (5)
O2—C7—C8120.7 (5)C2—C1—H1125.2
N3—Ni—N3ii176.24 (17)N1—C1—H1125.2
N3—Ni—O388.12 (9)C4—C5—N4106.3 (4)
N3ii—Ni—O388.12 (9)C4—C5—H6126.8
N3—Ni—N1ii90.61 (14)N4—C5—H6126.8
N3ii—Ni—N1ii89.13 (14)C2—N2—C3108.1 (4)
O3—Ni—N1ii86.07 (10)C2—N2—H3125.9
N3—Ni—N189.13 (14)C3—N2—H3125.9
N3ii—Ni—N190.61 (14)N1—C3—N2110.9 (5)
O3—Ni—N186.07 (10)N1—C3—H4124.6
N1ii—Ni—N1172.14 (19)N2—C3—H4124.6
N3—Ni—N591.88 (9)N2—C2—C1106.6 (4)
N3ii—Ni—N591.88 (9)N2—C2—H2126.7
O3—Ni—N5180.000 (1)C1—C2—H2126.7
N1ii—Ni—N593.93 (10)C9—N5—C9ii104.1 (6)
N1—Ni—N593.93 (9)C9—N5—Ni127.9 (3)
C3—N1—C1104.9 (4)C9ii—N5—Ni127.9 (3)
C3—N1—Ni130.4 (3)N5—C9—C10112.0 (5)
C1—N1—Ni124.7 (3)N5—C9—H10124.00
C6—N3—C4103.2 (4)C10—C9—H10122.3 (5)
C6—N3—Ni128.0 (3)C9—C10—N6ii106.0 (3)
C4—N3—Ni128.8 (3)C9—C10—C10ii106.0 (3)
C6—N4—C5107.1 (4)C9—C10—H11120.6 (5)
C6—N4—H7126.5N6ii—C10—H11133.5 (3)
C5—N4—H7126.5C10ii—C10—H11133.5 (3)
C8i—C8—C7—O1135.7 (8)C4—N3—C6—N40.4 (5)
Br—C8—C7—O1102.6 (6)Ni—N3—C6—N4177.2 (3)
C8i—C8—C7—O243.6 (9)C3—N1—C1—C20.8 (6)
Br—C8—C7—O278.1 (6)Ni—N1—C1—C2177.7 (4)
N3—Ni—N1—C398.0 (5)N3—C4—C5—N40.7 (5)
N3ii—Ni—N1—C385.8 (5)C6—N4—C5—C40.9 (5)
O3—Ni—N1—C3173.8 (5)C1—N1—C3—N21.5 (6)
N5—Ni—N1—C36.2 (5)Ni—N1—C3—N2176.9 (3)
N3—Ni—N1—C183.9 (4)C2—N2—C3—N11.6 (6)
N3ii—Ni—N1—C192.3 (4)C3—N2—C2—C11.0 (6)
O3—Ni—N1—C14.2 (4)N1—C1—C2—N20.1 (6)
N5—Ni—N1—C1175.8 (4)N3—Ni—N5—C92.8 (3)
O3—Ni—N3—C6110.0 (3)N3ii—Ni—N5—C9177.2 (3)
N1ii—Ni—N3—C6164.0 (4)N1ii—Ni—N5—C988.0 (3)
N1—Ni—N3—C623.9 (4)N1—Ni—N5—C992.0 (3)
N5—Ni—N3—C670.0 (3)N3—Ni—N5—C9ii177.2 (3)
O3—Ni—N3—C466.1 (3)N3ii—Ni—N5—C9ii2.8 (3)
N1ii—Ni—N3—C419.9 (3)N1ii—Ni—N5—C9ii92.0 (3)
N1—Ni—N3—C4152.2 (4)N1—Ni—N5—C9ii88.0 (3)
N5—Ni—N3—C4113.9 (3)C9ii—N5—C9—C100.2 (3)
C6—N3—C4—C50.2 (5)Ni—N5—C9—C10179.8 (3)
Ni—N3—C4—C5176.6 (3)N5—C9—C10—N6ii0.6 (6)
C5—N4—C6—N30.8 (5)N5—C9—C10—C10ii0.6 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O20.921.852.743 (5)165
N2—H3···O1iii0.862.042.773 (9)143
N4—H7···O2iv0.861.952.771 (6)158
N6—H11···O1v0.842.553.372 (8)167
C10—H11···O1v0.842.553.372 (8)167
Symmetry codes: (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y+3/2, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)5(H2O)](C4H2Br2O4)
Mr690.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.8702 (11), 12.9262 (11), 13.9436 (11)
β (°) 109.468 (3)
V3)2696.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.36 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.355, 0.440
No. of measured, independent and
observed [I > 2σ(I)] reflections
5513, 3000, 2048
Rint0.020
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.156, 1.05
No. of reflections3000
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.66

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—N32.147 (3)Ni—N12.185 (3)
Ni—O32.183 (4)Ni—N52.217 (5)
N3—Ni—N3i176.24 (17)N1i—Ni—N1172.14 (19)
N3—Ni—O388.12 (9)N3—Ni—N591.88 (9)
N3—Ni—N189.13 (14)O3—Ni—N5180.000 (1)
N3i—Ni—N190.61 (14)N1i—Ni—N593.93 (10)
O3—Ni—N186.07 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O20.921.852.743 (5)165
N2—H3···O1ii0.862.042.773 (9)143
N4—H7···O2iii0.861.952.771 (6)158
N6—H11···O1iv0.842.553.372 (8)167
C10—H11···O1iv0.842.553.372 (8)167
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+3/2, z+1; (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds