Download citation
Download citation
link to html
The asymmetric unit of the title compound, [CaI2(C4H8O)4], at 100 K comprises half each of two independent mol­ecules, each of which is located on a center of inversion, and in each of these, the central Ca atom is bound by two trans I atoms and four tetra­hydro­furan mol­ecules to give a distorted octa­hedral geometry. This compound undergoes a phase change on cooling from room temperature to 100 K, altering the space group from monoclinic P21/c to triclinic P\overline{1}. This change is also accompanied by a reduction in the positional disorder of the coordinated tetra­hydro­furan mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028254/tk6253sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028254/tk6253Isup2.hkl
Contains datablock I

CCDC reference: 287732

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.018 Å
  • Disorder in main residue
  • R factor = 0.058
  • wR factor = 0.171
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.89
Author Response: The crystal is a non-merohedral twin and a number of reflections were omitted to facilitate the refinement. The twinned model provides a much improved structure over that published by Hanusa (1994).

Alert level B REFLT03_ALERT_3_B Reflection count < 90% complete (theta max?) From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _diffrn_reflns_theta_full 26.99 From the CIF: _reflns_number_total 4361 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4876 Completeness (_total/calc) 89.44% PLAT022_ALERT_3_B Ratio Unique / Expected Reflections too Low .... 0.89
Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C16 PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 18 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C15 - C16 ... 1.43 Ang. PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.00 Deg. C12 -O3 -C12' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 26.60 Deg. C11' -C10 -C11 1.555 1.555 1.555
1 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As part of our ongoing investigations into the chemistry of the alkaline earth metals (He et al., 2005), we crystallized the title compound, (I). The room-temperature structure of (I) was first reported by Tesh et al. (1994). The original experiment found the monoclinic space group P21/c with unit-cell parameters a = 8.201 (7), b = 14.262 (9), c = 10.008 (6) Å, β = 93.93 (6)° and Z = 2. The asymmetric comprised a half-molecule, with the Ca center on an inversion center. Disorder was indicated in the atomic positions of the attached tetrahydrofuran (THF) molecules, as the molecules appear almost planar. We confirmed the identity of the room-temperature unit cell, but found that cooling to 100 K resulted in a phase change to the triclinic space group P1 with unit-cell parameters as listed in the Crystal data section. This phase change proved to be reversible upon warming the crystal to room temperature. The low-temperature structure was refined as a four-component non-merohedral twin. Twin domains were located using Cell_Now (Sheldrick, 2005). The scale factors between component one and subsequent components are 0.331 (2), 0.136 (2) and 0.121 (2).

Two independent half-molecules with similar metrical parameters occupy the asymmetric unit; one of these half-molecules is shown in Fig. 1. Each molecule has a pair of well defined THF ligands and a pair of easily modeled two-site disordered THF ligands. Overlaying one half-molecule on the other shows differences principally in the angles between the attached cis ligands. One of the molecules has these angles in the narrow range 88.55 (19)–91.45 (19)°, whereas these angles in the second molecule are in the range 84.36 (3)–95.65 (3)°. The analogous angles in the room-temperature structure are in the range 89.06 (6)–90.94 (7)°.

Experimental top

All experimental manipulations were carried out under a purified nitrogen atmosphere using standard Schlenk techniques. Hexane and THF were dried using a solvent purification system and stored over 4 Å molecular sieves prior to use. CaI2 was purchased from Aldrich as anhydrous beads and used as received. The NMR data were obtained on a Varian Unity Plus 300 spectrometer at 298 K. X-ray quality crystals of (I) formed at 253 K as a by-product in the reaction of tBuLi with CaI2 in a hexane/THF solution. 1H NMR (300 MHz, DMSO-d6, 298 K): δ 3.59 (m, OCH2, THF), 1.76 (m, CH2, THF).

Refinement top

H atoms were placed at calculated positions and allowed to ride on the parent C atoms, with C—H set at 0.97 Å and with Uiso(H) = 1.2Uiso(C). Disorder was modeled for the O3 THF molecule in the second independent molecule so that atoms C11 and C12were split over two sites. Anisotropic refinement of these showed that the major component has a site-occupancy factor of 0.63 (4). The four largest residual peaks in the final difference map, 2.27 to 1.34 e Å−3, were located near the I-atom positions, approximately perpendicular to the Ca—I bond, and may be alternate sites for these atoms.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 and SAINT (Bruker–Nonius, 2004); data reduction: SAINT and SHELXTL (Sheldrick, 2004); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure and atomic numbering for one independent molecule in (I); the Ca atom is located on a center of inversion. Displacement ellipsoids are drawn at the 50% displacement level and H atoms have been omitted for clarity.
trans-diiodotetrakis(tetrahydrofuran)calcium(II) top
Crystal data top
[CaI2(C8H16O2)2]Z = 2
Mr = 582.30F(000) = 572
Triclinic, P1Dx = 1.734 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.442 (2) ÅCell parameters from 5033 reflections
b = 9.858 (2) Åθ = 2.8–26.3°
c = 13.610 (3) ŵ = 3.06 mm1
α = 80.156 (1)°T = 100 K
β = 89.412 (1)°Needle, colorless
γ = 87.877 (1)°0.28 × 0.17 × 0.15 mm
V = 1115.2 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4361 independent reflections
Radiation source: fine-focus sealed tube, Siemens KFFMO2K-903852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.33 pixels mm-1θmax = 27.0°, θmin = 2.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 1112
Tmin = 0.53, Tmax = 0.64l = 016
4361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1062P)2 + 6.8251P]
where P = (Fo2 + 2Fc2)/3
4361 reflections(Δ/σ)max = 0.002
233 parametersΔρmax = 2.27 e Å3
24 restraintsΔρmin = 1.30 e Å3
Crystal data top
[CaI2(C8H16O2)2]γ = 87.877 (1)°
Mr = 582.30V = 1115.2 (4) Å3
Triclinic, P1Z = 2
a = 8.442 (2) ÅMo Kα radiation
b = 9.858 (2) ŵ = 3.06 mm1
c = 13.610 (3) ÅT = 100 K
α = 80.156 (1)°0.28 × 0.17 × 0.15 mm
β = 89.412 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4361 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3852 reflections with I > 2σ(I)
Tmin = 0.53, Tmax = 0.64Rint = 0.053
4361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05824 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.05Δρmax = 2.27 e Å3
4361 reflectionsΔρmin = 1.30 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.50000.50000.00000.0307 (7)
I10.73189 (9)0.73484 (8)0.07295 (5)0.0388 (2)
O10.6762 (9)0.3385 (8)0.0626 (6)0.041 (2)
C10.8489 (13)0.3380 (16)0.0547 (11)0.058 (4)
H1A0.88240.30000.01270.069*
H1B0.88670.43080.07200.069*
C20.9122 (15)0.2483 (17)0.1279 (11)0.061 (4)
H2A0.92450.30190.19410.073*
H2B1.01330.20390.10610.073*
C30.7862 (14)0.1444 (14)0.1265 (10)0.049 (3)
H3A0.80070.06900.07100.058*
H3B0.78590.10760.18820.058*
C40.6354 (14)0.2282 (13)0.1146 (9)0.042 (3)
H4A0.59100.26580.17940.050*
H4B0.55750.17070.07660.050*
O20.6259 (9)0.4496 (9)0.1558 (5)0.0377 (18)
C50.5378 (14)0.4201 (14)0.2498 (8)0.040 (3)
H5A0.54700.32270.27750.048*
H5B0.42650.44620.23960.048*
C60.6127 (15)0.5055 (13)0.3192 (8)0.041 (3)
H6A0.65010.44740.37990.050*
H6B0.53760.57460.33640.050*
C70.7502 (14)0.5724 (13)0.2587 (8)0.042 (3)
H7A0.72160.66640.22860.050*
H7B0.84240.57300.30050.050*
C80.7836 (13)0.4842 (13)0.1790 (8)0.036 (3)
H8A0.83550.53570.12130.043*
H8B0.84810.40260.20470.043*
Ca20.50000.00000.50000.0364 (7)
I20.26678 (11)0.19874 (9)0.43005 (6)0.0497 (3)
O30.3113 (11)0.1832 (10)0.4498 (6)0.056 (3)
C90.1868 (15)0.2028 (13)0.3798 (10)0.048 (3)
H9A0.10820.13360.39850.058*
H9B0.22760.19410.31420.058*
C100.1116 (15)0.3462 (13)0.3777 (9)0.045 (3)
H10A0.00100.34780.36400.054*
H10B0.16200.41390.32830.054*
C110.144 (3)0.373 (2)0.4888 (17)0.042 (6)0.63 (4)
H11A0.14080.47080.49270.050*0.63 (4)
H11B0.07060.32570.53710.050*0.63 (4)
C120.312 (3)0.309 (2)0.5005 (15)0.037 (6)0.63 (4)
H12A0.38870.37400.46890.045*0.63 (4)
H12B0.33910.28280.57050.045*0.63 (4)
C11'0.204 (5)0.397 (3)0.453 (3)0.034 (9)0.37 (4)
H11C0.14180.46240.48400.041*0.37 (4)
H11D0.29830.44090.42320.041*0.37 (4)
C12'0.249 (5)0.265 (4)0.530 (3)0.048 (11)0.37 (4)
H12C0.33100.28020.57600.058*0.37 (4)
H12D0.15840.22400.56610.058*0.37 (4)
O40.3655 (10)0.0220 (11)0.6568 (6)0.049 (2)
C130.4246 (14)0.0017 (14)0.7501 (8)0.039 (3)
H13A0.44370.09880.74740.047*
H13B0.52330.05050.76640.047*
C140.2955 (15)0.0461 (16)0.8290 (9)0.052 (3)
H14A0.31420.14150.85970.062*
H14B0.29080.01090.88050.062*
C150.1499 (17)0.0284 (19)0.7689 (10)0.065 (4)
H15A0.07280.09490.79710.078*
H15B0.10320.06350.76650.078*
C160.1963 (15)0.050 (2)0.6714 (10)0.075 (6)
H16A0.13420.01130.62170.090*
H16B0.17770.14400.66400.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0250 (17)0.0322 (16)0.0341 (15)0.0016 (13)0.0039 (12)0.0036 (12)
I10.0304 (4)0.0422 (4)0.0419 (4)0.0063 (3)0.0054 (3)0.0005 (3)
O10.021 (4)0.039 (4)0.067 (5)0.004 (3)0.007 (4)0.019 (4)
C10.020 (7)0.076 (10)0.089 (10)0.009 (6)0.009 (6)0.051 (9)
C20.030 (7)0.088 (12)0.070 (9)0.014 (7)0.000 (7)0.030 (8)
C30.028 (7)0.055 (8)0.068 (8)0.005 (6)0.004 (6)0.022 (7)
C40.034 (7)0.042 (7)0.053 (7)0.006 (5)0.004 (5)0.018 (6)
O20.028 (5)0.047 (5)0.039 (4)0.005 (4)0.003 (3)0.009 (4)
C50.041 (7)0.051 (8)0.029 (5)0.009 (6)0.001 (5)0.005 (5)
C60.044 (8)0.048 (7)0.030 (5)0.005 (6)0.005 (5)0.001 (5)
C70.036 (7)0.042 (7)0.046 (7)0.005 (6)0.012 (5)0.005 (6)
C80.021 (6)0.045 (7)0.041 (6)0.006 (5)0.002 (5)0.004 (5)
Ca20.0233 (18)0.052 (2)0.0330 (16)0.0062 (14)0.0009 (12)0.0063 (14)
I20.0419 (6)0.0534 (5)0.0522 (5)0.0089 (4)0.0018 (4)0.0027 (4)
O30.051 (6)0.068 (6)0.053 (5)0.030 (5)0.027 (4)0.026 (5)
C90.040 (8)0.047 (7)0.062 (8)0.001 (6)0.020 (6)0.020 (6)
C100.039 (8)0.048 (7)0.044 (7)0.001 (6)0.001 (5)0.006 (6)
C110.042 (6)0.041 (6)0.042 (6)0.001 (2)0.001 (2)0.007 (2)
C120.037 (6)0.038 (6)0.038 (6)0.001 (2)0.000 (2)0.007 (2)
C11'0.035 (9)0.034 (9)0.034 (9)0.001 (2)0.000 (2)0.006 (3)
C12'0.049 (11)0.048 (11)0.048 (11)0.002 (2)0.001 (2)0.008 (3)
O40.027 (5)0.084 (7)0.036 (4)0.004 (5)0.000 (3)0.011 (4)
C130.028 (7)0.052 (8)0.043 (6)0.003 (6)0.008 (5)0.022 (6)
C140.039 (8)0.075 (10)0.043 (7)0.004 (7)0.002 (6)0.017 (7)
C150.043 (9)0.097 (13)0.058 (9)0.020 (9)0.014 (7)0.023 (8)
C160.024 (8)0.151 (18)0.050 (8)0.011 (9)0.000 (6)0.017 (9)
Geometric parameters (Å, º) top
Ca1—O22.349 (7)Ca2—I23.0957 (9)
Ca1—O2i2.349 (7)Ca2—I2ii3.0957 (9)
Ca1—O1i2.395 (8)O3—C91.411 (13)
Ca1—O12.395 (8)O3—C121.52 (2)
Ca1—I13.1125 (9)O3—C12'1.54 (4)
Ca1—I1i3.1125 (9)C9—C101.524 (17)
O1—C41.448 (13)C9—H9A0.9700
O1—C11.463 (13)C9—H9B0.9700
C1—C21.522 (17)C10—C11'1.46 (3)
C1—H1A0.9700C10—C111.61 (2)
C1—H1B0.9700C10—H10A0.9700
C2—C31.501 (18)C10—H10B0.9700
C2—H2A0.9700C11—C121.53 (3)
C2—H2B0.9700C11—H11A0.9700
C3—C41.515 (17)C11—H11B0.9700
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C4—H4A0.9700C11'—C12'1.56 (6)
C4—H4B0.9700C11'—H11C0.9700
O2—C81.438 (12)C11'—H11D0.9700
O2—C51.464 (13)C12'—H12C0.9700
C5—C61.524 (15)C12'—H12D0.9700
C5—H5A0.9700O4—C131.428 (12)
C5—H5B0.9700O4—C161.469 (15)
C6—C71.520 (16)C13—C141.551 (17)
C6—H6A0.9700C13—H13A0.9700
C6—H6B0.9700C13—H13B0.9700
C7—C81.519 (16)C14—C151.472 (18)
C7—H7A0.9700C14—H14A0.9700
C7—H7B0.9700C14—H14B0.9700
C8—H8A0.9700C15—C161.427 (18)
C8—H8B0.9700C15—H15A0.9700
Ca2—O3ii2.378 (8)C15—H15B0.9700
Ca2—O32.378 (8)C16—H16A0.9700
Ca2—O42.388 (8)C16—H16B0.9700
Ca2—O4ii2.388 (8)
O2—Ca1—O2i180.0O3ii—Ca2—I2ii88.5 (2)
O2—Ca1—O1i89.9 (3)O3—Ca2—I2ii91.5 (2)
O2i—Ca1—O1i90.1 (3)O4—Ca2—I2ii90.1 (2)
O2—Ca1—O190.1 (3)O4ii—Ca2—I2ii89.9 (2)
O2i—Ca1—O189.9 (3)I2—Ca2—I2ii179.999 (2)
O1i—Ca1—O1180.0 (4)C9—O3—C12107.9 (10)
O2—Ca1—I191.30 (19)C9—O3—C12'102.5 (16)
O2i—Ca1—I188.70 (19)C12—O3—C12'29.0 (15)
O1i—Ca1—I189.9 (2)C9—O3—Ca2133.2 (7)
O1—Ca1—I190.1 (2)C12—O3—Ca2118.8 (8)
O2—Ca1—I1i88.70 (19)C12'—O3—Ca2117.4 (15)
O2i—Ca1—I1i91.30 (19)O3—C9—C10108.5 (10)
O1i—Ca1—I1i90.1 (2)O3—C9—H9A110.0
O1—Ca1—I1i89.9 (2)C10—C9—H9A110.0
I1—Ca1—I1i180.0O3—C9—H9B110.0
C4—O1—C1108.2 (8)C10—C9—H9B110.0
C4—O1—Ca1127.8 (7)H9A—C9—H9B108.4
C1—O1—Ca1123.9 (6)C11'—C10—C9101.6 (15)
O1—C1—C2105.6 (10)C11'—C10—C1126.6 (14)
O1—C1—H1A110.6C9—C10—C11102.4 (11)
C2—C1—H1A110.6C11'—C10—H10A133.3
O1—C1—H1B110.6C9—C10—H10A111.3
C2—C1—H1B110.6C11—C10—H10A111.3
H1A—C1—H1B108.8C11'—C10—H10B87.4
C3—C2—C1103.1 (11)C9—C10—H10B111.3
C3—C2—H2A111.2C11—C10—H10B111.3
C1—C2—H2A111.2H10A—C10—H10B109.2
C3—C2—H2B111.2C12—C11—C1097.7 (16)
C1—C2—H2B111.2C12—C11—H11A112.2
H2A—C2—H2B109.1C10—C11—H11A112.2
C2—C3—C4102.7 (11)C12—C11—H11B112.2
C2—C3—H3A111.2C10—C11—H11B112.2
C4—C3—H3A111.2H11A—C11—H11B109.8
C2—C3—H3B111.2O3—C12—C11105.7 (15)
C4—C3—H3B111.2O3—C12—H12A110.6
H3A—C3—H3B109.1C11—C12—H12A110.6
O1—C4—C3107.4 (9)O3—C12—H12B110.6
O1—C4—H4A110.2C11—C12—H12B110.6
C3—C4—H4A110.2H12A—C12—H12B108.7
O1—C4—H4B110.2C10—C11'—C12'104 (3)
C3—C4—H4B110.2C10—C11'—H11C110.9
H4A—C4—H4B108.5C12'—C11'—H11C110.9
C8—O2—C5107.5 (8)C10—C11'—H11D110.9
C8—O2—Ca1127.0 (6)C12'—C11'—H11D110.9
C5—O2—Ca1122.6 (6)H11C—C11'—H11D108.9
O2—C5—C6105.6 (9)O3—C12'—C11'94 (3)
O2—C5—H5A110.6O3—C12'—H12C113.0
C6—C5—H5A110.6C11'—C12'—H12C113.0
O2—C5—H5B110.6O3—C12'—H12D112.9
C6—C5—H5B110.6C11'—C12'—H12D112.9
H5A—C5—H5B108.7H12C—C12'—H12D110.4
C5—C6—C7103.9 (9)C13—O4—C16106.9 (9)
C5—C6—H6A111.0C13—O4—Ca2128.3 (7)
C7—C6—H6A111.0C16—O4—Ca2124.5 (7)
C5—C6—H6B111.0O4—C13—C14106.3 (9)
C7—C6—H6B111.0O4—C13—H13A110.5
H6A—C6—H6B109.0C14—C13—H13A110.5
C8—C7—C6105.1 (10)O4—C13—H13B110.5
C8—C7—H7A110.7C14—C13—H13B110.5
C6—C7—H7A110.7H13A—C13—H13B108.7
C8—C7—H7B110.7C15—C14—C13102.3 (10)
C6—C7—H7B110.7C15—C14—H14A111.3
H7A—C7—H7B108.8C13—C14—H14A111.3
O2—C8—C7101.3 (9)C15—C14—H14B111.3
O2—C8—H8A111.5C13—C14—H14B111.3
C7—C8—H8A111.5H14A—C14—H14B109.2
O2—C8—H8B111.5C16—C15—C14106.1 (12)
C7—C8—H8B111.5C16—C15—H15A110.5
H8A—C8—H8B109.3C14—C15—H15A110.5
O3ii—Ca2—O3179.999 (1)C16—C15—H15B110.5
O3ii—Ca2—O495.6 (3)C14—C15—H15B110.5
O3—Ca2—O484.4 (3)H15A—C15—H15B108.7
O3ii—Ca2—O4ii84.4 (3)C15—C16—O4109.0 (11)
O3—Ca2—O4ii95.6 (3)C15—C16—H16A109.9
O4—Ca2—O4ii180.000 (1)O4—C16—H16A109.9
O3ii—Ca2—I291.5 (2)C15—C16—H16B109.9
O3—Ca2—I288.5 (2)O4—C16—H16B109.9
O4—Ca2—I289.9 (2)H16A—C16—H16B108.3
O4ii—Ca2—I290.1 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CaI2(C8H16O2)2]
Mr582.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.442 (2), 9.858 (2), 13.610 (3)
α, β, γ (°)80.156 (1), 89.412 (1), 87.877 (1)
V3)1115.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.28 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.53, 0.64
No. of measured, independent and
observed [I > 2σ(I)] reflections
4361, 4361, 3852
Rint0.053
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.171, 1.05
No. of reflections4361
No. of parameters233
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.27, 1.30

Computer programs: APEX2 (Bruker–Nonius, 2004), APEX2 and SAINT (Bruker–Nonius, 2004), SAINT and SHELXTL (Sheldrick, 2004), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds