Download citation
Download citation
link to html
The components of the title solvate structure, C14H12N2O2·C3H7NO, are connected via N—H...O, O—H...N and O—H...O hydrogen bonds, leading to a chain motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030679/tk6258sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030679/tk6258Isup2.hkl
Contains datablock I

CCDC reference: 287736

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.149
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT411_ALERT_2_B Short Inter H...H Contact H10 .. H10 .. 2.05 Ang.
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N3 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C9 -C14 1.37 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. N1 .. 2.64 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

One of the aims of investigating the structural chemistry of Schiff bases is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, the present study details the molecular structure of the title compound, (I).

The asymmetric unit of (I) comprises one moelcule each of N'-(4-hydroxybenzylidene)benzohydrazide and dimethylformamide (Fig. 1). The key N1—N2, N1C7 and C6—C7 bond lengths are 1.384 (3), 1.274 (3) and 1.465 (3) Å, respectively, which are consistent with those found in 2-hydroxy-3-methoxybenzaldehyde 2,4-dinitrophenylhydrazone (Jing et al., 2005). The non-H atoms of the phenol moiety are planar, with an r.m.s. deviation of 0.017 Å, and similarly the r.m.s. deviation of the N1/N2/C8–C14/O2 atoms from their least-squares plane is 0.073 Å. The dihedral angle between the aformentioned planes is 8.17 (10)°. Intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds stabilize the crystal packing (Fig. 2). As detailed in Table 2, the H atom on O1 forms a strong interaction with atom O2i and these extend along the b axis to form a chain [symmetry code: (i) 2 − x, y − 1/2, 1/2 − z]. Additional stabilization to the chain are afforded by somewhat weaker O1—H···N2i interactions. In this sense, the hydroxyl H atom might be thought of as being bifurcated. The dimethylformamide molecules are connected to this chain via N—H···O3 interactions.

Experimental top

An anhydrous ethanol solution of 4-hydroxybenzaldehyde (1.22 g, 10 mmol) was added to an anhydrous ethanol solution of benzohydrazide (1.36 g, 10 mmol) and the mixture was stirred at 350 K for 5 h under nitrogen whereupon a yellow precipitate appeared. The product was isolated, recrystallized from ethanol and then dried in vacuo to give pure compound (I) in 87% yield (m.p. 504 K, literature 502 K (Kaupp et al., 2000). Bright-yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

C-bound H atoms were included in the riding-model approximation, with C—H bond lengths of 0.93 (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), respectively. The O– and N-bound H atoms were refined freely (see Table 1).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in (I); hydrogen-bonding interactions are shown as dashed lines.
N'-(4-Hydroxybenzylidene)benzohydrazide dimethylformamide solvate top
Crystal data top
C14H12N2O2·C3H7NOF(000) = 1328
Mr = 313.35Dx = 1.254 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2528 reflections
a = 15.518 (3) Åθ = 2.7–22.5°
b = 9.3215 (18) ŵ = 0.09 mm1
c = 22.942 (5) ÅT = 294 K
V = 3318.4 (11) Å3Block, yellow
Z = 80.30 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3424 independent reflections
Radiation source: fine-focus sealed tube1576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 1997a)
h = 1914
Tmin = 0.932, Tmax = 0.983k = 1111
17730 measured reflectionsl = 1928
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.9554P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3424 reflectionsΔρmax = 0.17 e Å3
218 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (9)
Crystal data top
C14H12N2O2·C3H7NOV = 3318.4 (11) Å3
Mr = 313.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.518 (3) ŵ = 0.09 mm1
b = 9.3215 (18) ÅT = 294 K
c = 22.942 (5) Å0.30 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3424 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1997a)
1576 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.983Rint = 0.081
17730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.17 e Å3
3424 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93036 (13)0.1580 (2)0.14871 (8)0.0628 (5)
H10.981 (2)0.191 (4)0.1334 (15)0.125 (14)*
O20.94921 (12)0.7889 (2)0.41577 (8)0.0792 (6)
N10.85740 (13)0.6177 (2)0.34808 (8)0.0567 (6)
N20.81954 (15)0.6977 (2)0.39197 (9)0.0566 (6)
H20.7577 (19)0.684 (3)0.3967 (11)0.080 (9)*
C10.92519 (16)0.4467 (3)0.25591 (10)0.0554 (7)
H1A0.96160.51610.27150.066*
C20.95532 (16)0.3550 (3)0.21357 (10)0.0556 (7)
H2A1.01200.36290.20070.067*
C30.90214 (15)0.2513 (3)0.19000 (10)0.0480 (6)
C40.81856 (15)0.2404 (3)0.20917 (11)0.0563 (7)
H40.78240.17040.19380.068*
C50.78818 (16)0.3330 (3)0.25124 (11)0.0576 (7)
H50.73120.32570.26350.069*
C60.84059 (15)0.4364 (3)0.27552 (10)0.0481 (6)
C70.80812 (17)0.5291 (3)0.32214 (10)0.0551 (7)
H70.75050.52310.33300.066*
C80.87134 (18)0.7807 (3)0.42500 (11)0.0563 (7)
C90.83153 (16)0.8596 (3)0.47440 (10)0.0520 (6)
C100.88213 (19)0.9556 (3)0.50354 (13)0.0823 (10)
H100.93780.97270.49030.099*
C110.8527 (2)1.0273 (4)0.55183 (14)0.0911 (10)
H110.88861.09160.57110.109*
C120.7716 (3)1.0043 (4)0.57135 (13)0.0828 (10)
H120.75141.05280.60410.099*
C130.7197 (2)0.9101 (4)0.54295 (14)0.0913 (11)
H130.66380.89460.55610.110*
C140.74972 (19)0.8369 (3)0.49435 (12)0.0784 (9)
H140.71400.77200.47530.094*
O30.63555 (13)0.6751 (2)0.38773 (9)0.0846 (7)
N30.50132 (14)0.7690 (2)0.38478 (10)0.0687 (7)
C150.5643 (2)0.6881 (3)0.36595 (13)0.0711 (8)
H150.55370.63490.33240.085*
C160.41875 (19)0.7774 (4)0.35486 (16)0.0999 (11)
H16A0.41870.71270.32230.150*
H16B0.40960.87360.34120.150*
H16C0.37340.75140.38130.150*
C170.5132 (2)0.8582 (4)0.43590 (14)0.0992 (11)
H17A0.54230.80410.46560.149*
H17B0.45810.88890.45020.149*
H17C0.54720.94050.42580.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0628 (13)0.0704 (13)0.0553 (11)0.0052 (10)0.0097 (9)0.0136 (10)
O20.0582 (13)0.1083 (17)0.0711 (13)0.0117 (11)0.0182 (10)0.0253 (12)
N10.0575 (14)0.0679 (15)0.0447 (11)0.0064 (12)0.0072 (10)0.0053 (11)
N20.0510 (14)0.0701 (15)0.0487 (12)0.0028 (12)0.0085 (11)0.0132 (11)
C10.0540 (17)0.0634 (17)0.0488 (14)0.0087 (13)0.0039 (12)0.0046 (13)
C20.0499 (16)0.0686 (18)0.0482 (14)0.0065 (13)0.0084 (12)0.0026 (14)
C30.0521 (16)0.0546 (15)0.0374 (12)0.0003 (13)0.0023 (11)0.0028 (12)
C40.0491 (16)0.0655 (18)0.0542 (15)0.0095 (13)0.0012 (12)0.0059 (14)
C50.0457 (15)0.0729 (19)0.0541 (15)0.0017 (14)0.0075 (12)0.0011 (15)
C60.0482 (15)0.0553 (16)0.0406 (13)0.0042 (13)0.0021 (11)0.0037 (12)
C70.0516 (16)0.0652 (18)0.0485 (14)0.0066 (14)0.0060 (12)0.0023 (14)
C80.0563 (18)0.0669 (18)0.0458 (14)0.0031 (15)0.0088 (12)0.0011 (13)
C90.0551 (16)0.0566 (16)0.0442 (13)0.0006 (13)0.0086 (12)0.0017 (13)
C100.074 (2)0.093 (2)0.080 (2)0.0127 (18)0.0141 (17)0.0278 (19)
C110.096 (3)0.088 (2)0.089 (2)0.007 (2)0.007 (2)0.034 (2)
C120.110 (3)0.075 (2)0.0640 (19)0.011 (2)0.0167 (19)0.0177 (17)
C130.078 (2)0.118 (3)0.078 (2)0.003 (2)0.0313 (17)0.028 (2)
C140.071 (2)0.098 (2)0.0664 (18)0.0166 (17)0.0194 (16)0.0242 (17)
O30.0567 (13)0.1136 (18)0.0835 (14)0.0104 (12)0.0006 (11)0.0066 (13)
N30.0550 (15)0.0741 (16)0.0769 (16)0.0048 (13)0.0096 (12)0.0034 (14)
C150.063 (2)0.079 (2)0.0717 (19)0.0011 (17)0.0072 (16)0.0040 (16)
C160.056 (2)0.106 (3)0.138 (3)0.0074 (19)0.003 (2)0.010 (2)
C170.107 (3)0.103 (3)0.088 (2)0.012 (2)0.018 (2)0.010 (2)
Geometric parameters (Å, º) top
O1—C31.358 (3)C9—C141.366 (3)
O1—H10.91 (3)C10—C111.372 (4)
O2—C81.229 (3)C10—H100.9300
N1—C71.274 (3)C11—C121.354 (4)
N1—N21.384 (3)C11—H110.9300
N2—C81.348 (3)C12—C131.357 (4)
N2—H20.97 (3)C12—H120.9300
C1—C21.376 (3)C13—C141.388 (4)
C1—C61.391 (3)C13—H130.9300
C1—H1A0.9300C14—H140.9300
C2—C31.381 (3)O3—C151.219 (3)
C2—H2A0.9300N3—C151.308 (3)
C3—C41.373 (3)N3—C171.449 (4)
C4—C51.378 (3)N3—C161.456 (4)
C4—H40.9300C15—H150.9300
C5—C61.378 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.465 (3)C16—H16C0.9600
C7—H70.9300C17—H17A0.9600
C8—C91.486 (3)C17—H17B0.9600
C9—C101.365 (4)C17—H17C0.9600
C3—O1—H1109 (2)C9—C10—H10119.2
C7—N1—N2115.8 (2)C11—C10—H10119.2
C8—N2—N1117.7 (2)C12—C11—C10119.9 (3)
C8—N2—H2127.0 (15)C12—C11—H11120.0
N1—N2—H2115.3 (15)C10—C11—H11120.0
C2—C1—C6120.4 (2)C11—C12—C13119.7 (3)
C2—C1—H1A119.8C11—C12—H12120.2
C6—C1—H1A119.8C13—C12—H12120.2
C1—C2—C3120.6 (2)C12—C13—C14120.3 (3)
C1—C2—H2A119.7C12—C13—H13119.8
C3—C2—H2A119.7C14—C13—H13119.8
O1—C3—C4118.7 (2)C9—C14—C13120.3 (3)
O1—C3—C2121.9 (2)C9—C14—H14119.9
C4—C3—C2119.4 (2)C13—C14—H14119.9
C3—C4—C5120.0 (2)C15—N3—C17120.2 (3)
C3—C4—H4120.0C15—N3—C16122.2 (3)
C5—C4—H4120.0C17—N3—C16117.6 (3)
C6—C5—C4121.3 (2)O3—C15—N3126.8 (3)
C6—C5—H5119.4O3—C15—H15116.6
C4—C5—H5119.4N3—C15—H15116.6
C5—C6—C1118.3 (2)N3—C16—H16A109.5
C5—C6—C7120.3 (2)N3—C16—H16B109.5
C1—C6—C7121.3 (2)H16A—C16—H16B109.5
N1—C7—C6121.2 (2)N3—C16—H16C109.5
N1—C7—H7119.4H16A—C16—H16C109.5
C6—C7—H7119.4H16B—C16—H16C109.5
O2—C8—N2121.7 (2)N3—C17—H17A109.5
O2—C8—C9120.6 (2)N3—C17—H17B109.5
N2—C8—C9117.7 (2)H17A—C17—H17B109.5
C10—C9—C14118.2 (2)N3—C17—H17C109.4
C10—C9—C8117.3 (2)H17A—C17—H17C109.5
C14—C9—C8124.4 (2)H17B—C17—H17C109.5
C9—C10—C11121.6 (3)
C7—N1—N2—C8172.5 (2)N1—N2—C8—C9176.3 (2)
C6—C1—C2—C30.1 (4)O2—C8—C9—C108.8 (4)
C1—C2—C3—O1179.1 (2)N2—C8—C9—C10172.8 (2)
C1—C2—C3—C40.0 (4)O2—C8—C9—C14167.5 (3)
O1—C3—C4—C5179.7 (2)N2—C8—C9—C1410.9 (4)
C2—C3—C4—C50.5 (4)C14—C9—C10—C110.4 (5)
C3—C4—C5—C61.0 (4)C8—C9—C10—C11176.1 (3)
C4—C5—C6—C10.9 (4)C9—C10—C11—C120.5 (5)
C4—C5—C6—C7177.0 (2)C10—C11—C12—C130.1 (5)
C2—C1—C6—C50.4 (4)C11—C12—C13—C140.4 (5)
C2—C1—C6—C7177.6 (2)C10—C9—C14—C130.1 (4)
N2—N1—C7—C6179.0 (2)C8—C9—C14—C13176.3 (3)
C5—C6—C7—N1174.7 (2)C12—C13—C14—C90.5 (5)
C1—C6—C7—N13.2 (4)C17—N3—C15—O31.6 (5)
N1—N2—C8—O22.0 (4)C16—N3—C15—O3179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (3)2.64 (4)3.316 (3)132 (3)
O1—H1···O2i0.91 (3)1.81 (4)2.677 (3)158 (3)
N2—H2···O30.97 (3)1.91 (3)2.864 (3)166 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O2·C3H7NO
Mr313.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)15.518 (3), 9.3215 (18), 22.942 (5)
V3)3318.4 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1997a)
Tmin, Tmax0.932, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17730, 3424, 1576
Rint0.081
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.149, 0.98
No. of reflections3424
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997b), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (3)2.64 (4)3.316 (3)132 (3)
O1—H1···O2i0.91 (3)1.81 (4)2.677 (3)158 (3)
N2—H2···O30.97 (3)1.91 (3)2.864 (3)166 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds