Download citation
Download citation
link to html
Two independent mol­ecules comprise the asymmetric unit of the title compound, C19H13Br2N, which was synthesized by N-alkyl­ation of benzyl bromide with 3,6-dibromo-9H-carbazole. The carbazole ring system is essentially planar and forms a dihedral angle with the pendant phenyl ring of 66.0 (2)° [70.6 (2)° for the second mol­ecule]. In the crystal structure, π–π inter­actions and weak C—H...Br inter­actions are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029430/tk6261sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029430/tk6261Isup2.hkl
Contains datablock I

CCDC reference: 287739

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.045
  • wR factor = 0.095
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 12 PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. BR3 .. 3.00 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H12 .. BR1 .. 3.01 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H25 .. BR4 .. 2.97 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.40 From the CIF: _reflns_number_total 5698 Count of symmetry unique reflns 3318 Completeness (_total/calc) 171.73% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2380 Fraction of Friedel pairs measured 0.717 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Carbazole derivatives substituted by N-alkylation possess valuable pharmaceutical properties (Buu-Hoï & Royer, 1950; Harfenist & Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). In this paper, the structure of 9-benzyl-3,6-dibromo-9H-carbazole (I), is reported which was synthesized by N-alkylation of benzyl bromide with 3,6-dibromo-9H-carbazole.

The asymmetric unit of (I) comprises two independent but similar molecules, Fig. 1. The carbazole ring in each is essentially planar, with mean deviations of 0.030 and 0.016 Å, respectively. The dihedral angles formed between the carbazole ring and the plane through the pendant phenyl ring is 66.0 (2)° [70.6 (2)° for the second molecule]. The C—Br distances fall in the range 1.903 (7) to 1.925 (8) Å, consistent with the literature (Allen et al., 1987). In the crystal structure, there are π-π interactions with the closest of these, 3.66 Å, is formed between the N1—C7 and C7—C12 rings of translationally related molecules [x, −1 + y, z]. In addition, there are C—H···Br interactions, as shown in Fig. 2 and detailed in Table 1.

Experimental top

The title compound was prepared according to the procedure of Duan et al. (2005). A solution of potassium hydroxide (7.0 g) in dimethylformamide (50 ml) was stirred at room temperature for 20 min. 3,6-Dibromo-carbazole (6.5 g, 20 mmol), prepared as in Smith et al. (1992) was added and the mixture stirred for a further 40 min. A solution of benzyl bromide (5.1 g, 30 mmol) in dimethylformamide (50 ml) was added dropwise with stirring. The resulting mixture was then stirred at room temperature for 10 h and poured into water (500 ml), yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from EtOH, giving crystals of (I). Yield: 7.51 g (90.5%); m.p. 430–432 K. 1H NMR (DMSO-d6, δ, p.p.m.) 5.6 (s, 2H), 7.2–7.6 (m, 9H), 8.5 (m, 2H); 13C NMR (DMSO-d6, δ, p.p.m.) 46.8, 112.4, 112.9, 124.1, 124.5, 127.4, 128.3, 129.6, 129.9, 138.2, 140.2. Compound (I) (40 mg) was dissolved in mixture of chloroform (5 ml) and ethanol (5 ml) and the solution was kept at room temperature for 16 d. Natural evaporation of the solution gave colourless crystals suitable for X-Ray analysis.

Refinement top

All H atoms were included in the riding model approximation with C—H distances = 0.93 (aromatic) and 0.97 (methylene) Å, and with Uiso(H) = 1.2xUeq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of (I); displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing in (I), viewed down the b- direction. Dashed lines indicate C—H···Br interactions.
9-Benzyl-3,6-dibromo-9H-carbazole top
Crystal data top
C19H13Br2NF(000) = 1632
Mr = 415.12Dx = 1.707 Mg m3
Monoclinic, CcMelting point: 431(1) K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 39.113 (6) ÅCell parameters from 1791 reflections
b = 4.5063 (7) Åθ = 2.3–21.4°
c = 20.469 (3) ŵ = 5.01 mm1
β = 116.449 (2)°T = 294 K
V = 3230.1 (9) Å3Rod, colourless
Z = 80.24 × 0.18 × 0.14 mm
Data collection top
CCD area detector
diffractometer
5698 independent reflections
Radiation source: fine-focus sealed tube3115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan
SADABS (Bruker, 1997)
h = 4844
Tmin = 0.310, Tmax = 0.496k = 35
8574 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0127P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
5698 reflectionsΔρmax = 0.34 e Å3
397 parametersΔρmin = 0.40 e Å3
2 restraintsAbsolute structure: Flack (1983), 2371 Friedel pairs.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (11)
Crystal data top
C19H13Br2NV = 3230.1 (9) Å3
Mr = 415.12Z = 8
Monoclinic, CcMo Kα radiation
a = 39.113 (6) ŵ = 5.01 mm1
b = 4.5063 (7) ÅT = 294 K
c = 20.469 (3) Å0.24 × 0.18 × 0.14 mm
β = 116.449 (2)°
Data collection top
CCD area detector
diffractometer
5698 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1997)
3115 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.496Rint = 0.043
8574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.34 e Å3
S = 0.94Δρmin = 0.40 e Å3
5698 reflectionsAbsolute structure: Flack (1983), 2371 Friedel pairs.
397 parametersAbsolute structure parameter: 0.010 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83899 (2)0.05386 (19)0.92134 (4)0.0685 (3)
Br20.95821 (2)1.06460 (18)0.74368 (5)0.0702 (3)
Br30.71044 (2)0.4670 (2)0.70656 (5)0.0761 (3)
Br40.58665 (3)0.48885 (19)0.96645 (5)0.0756 (3)
N10.81271 (16)0.3578 (12)0.6242 (3)0.0420 (15)
N20.56825 (18)1.0561 (13)0.6868 (4)0.0518 (17)
C10.8140 (2)0.2487 (14)0.6875 (4)0.0349 (19)
C20.8468 (2)0.3583 (16)0.7476 (4)0.0413 (19)
C30.8540 (2)0.2714 (17)0.8177 (4)0.0452 (19)
H30.87520.34340.85800.054*
C40.8296 (2)0.0802 (16)0.8267 (4)0.0451 (18)
C50.7970 (2)0.0274 (15)0.7680 (4)0.0494 (19)
H50.78060.15540.77620.059*
C60.7889 (2)0.0564 (14)0.6975 (4)0.0423 (18)
H60.76720.01400.65780.051*
C70.8450 (2)0.5360 (15)0.6419 (4)0.0391 (18)
C80.86589 (18)0.5454 (14)0.7181 (4)0.0341 (17)
C90.8998 (2)0.7069 (14)0.7490 (4)0.0456 (18)
H90.91420.71720.79930.055*
C100.9113 (2)0.8507 (14)0.7030 (5)0.051 (2)
C110.8900 (2)0.8387 (17)0.6272 (5)0.062 (2)
H110.89870.93680.59760.074*
C120.8567 (2)0.6854 (15)0.5964 (4)0.0461 (18)
H120.84210.68100.54600.055*
C130.78659 (19)0.2692 (16)0.5498 (3)0.0464 (18)
H13A0.77430.08490.55200.056*
H13B0.80140.22990.52340.056*
C140.75608 (19)0.4919 (14)0.5072 (3)0.0399 (17)
C150.7288 (2)0.5695 (16)0.5294 (4)0.0491 (19)
H150.72930.48390.57120.059*
C160.7006 (2)0.774 (2)0.4900 (5)0.062 (2)
H160.68280.83100.50610.074*
C170.6992 (3)0.8892 (19)0.4283 (5)0.072 (3)
H170.67981.02190.40130.086*
C180.7253 (3)0.817 (2)0.4044 (4)0.065 (3)
H180.72400.90080.36170.078*
C190.7545 (2)0.6153 (16)0.4447 (4)0.0475 (19)
H190.77270.56530.42900.057*
C200.5994 (2)0.9402 (17)0.6817 (4)0.0435 (18)
C210.61892 (19)0.7470 (15)0.7412 (4)0.0385 (17)
C220.65250 (19)0.6069 (15)0.7496 (4)0.0456 (18)
H220.66600.48210.78890.055*
C230.6649 (2)0.6603 (17)0.6975 (4)0.055 (2)
C240.6459 (3)0.8433 (19)0.6392 (4)0.065 (2)
H240.65540.87310.60540.078*
C250.6125 (2)0.9854 (17)0.6301 (4)0.057 (2)
H250.59931.10820.59020.068*
C260.5671 (2)0.9419 (16)0.7489 (4)0.044 (2)
C270.5987 (2)0.7515 (16)0.7848 (4)0.0399 (17)
C280.6040 (2)0.6122 (15)0.8495 (4)0.0435 (18)
H280.62400.47990.87320.052*
C290.5788 (2)0.6777 (17)0.8765 (4)0.055 (2)
C300.5472 (2)0.8627 (17)0.8410 (5)0.057 (2)
H300.53010.89390.86050.068*
C310.5417 (2)0.9963 (17)0.7778 (4)0.056 (2)
H310.52111.12340.75410.067*
C320.5397 (2)1.2495 (16)0.6329 (4)0.057 (2)
H32A0.55171.36680.60910.069*
H32B0.53011.38520.65780.069*
C330.5066 (2)1.0807 (16)0.5758 (4)0.057 (2)
C340.4725 (3)1.0500 (19)0.5790 (5)0.075 (3)
H340.46941.13920.61710.090*
C350.4428 (3)0.891 (2)0.5276 (5)0.084 (3)
H350.42000.87110.53130.101*
C360.4468 (3)0.762 (2)0.4708 (5)0.079 (3)
H360.42650.65690.43550.095*
C370.4803 (3)0.788 (2)0.4656 (5)0.084 (3)
H370.48320.69870.42730.101*
C380.5098 (3)0.948 (2)0.5179 (5)0.077 (3)
H380.53250.96780.51420.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0723 (6)0.0920 (7)0.0466 (5)0.0006 (6)0.0315 (5)0.0050 (6)
Br20.0428 (5)0.0592 (5)0.1048 (7)0.0068 (5)0.0294 (5)0.0054 (6)
Br30.0519 (5)0.1045 (8)0.0825 (6)0.0144 (6)0.0394 (5)0.0204 (6)
Br40.1052 (7)0.0843 (6)0.0493 (5)0.0112 (6)0.0452 (5)0.0086 (5)
N10.036 (4)0.048 (4)0.039 (4)0.007 (3)0.014 (3)0.005 (3)
N20.039 (4)0.054 (4)0.042 (4)0.009 (3)0.000 (3)0.003 (3)
C10.038 (5)0.028 (5)0.039 (4)0.001 (3)0.017 (4)0.005 (3)
C20.039 (5)0.039 (4)0.044 (5)0.006 (3)0.017 (4)0.006 (4)
C30.036 (5)0.056 (5)0.042 (5)0.003 (4)0.015 (4)0.011 (4)
C40.044 (5)0.055 (5)0.031 (4)0.007 (4)0.012 (4)0.001 (4)
C50.044 (5)0.047 (5)0.063 (5)0.008 (4)0.029 (4)0.000 (4)
C60.035 (4)0.044 (5)0.042 (4)0.004 (4)0.011 (4)0.007 (4)
C70.029 (4)0.039 (4)0.045 (5)0.000 (4)0.012 (4)0.002 (4)
C80.029 (4)0.033 (4)0.041 (4)0.002 (3)0.016 (4)0.000 (4)
C90.033 (4)0.037 (4)0.057 (5)0.005 (3)0.012 (4)0.008 (4)
C100.040 (5)0.035 (4)0.081 (6)0.002 (3)0.029 (5)0.001 (4)
C110.055 (6)0.060 (5)0.080 (7)0.009 (4)0.038 (5)0.013 (5)
C120.039 (5)0.053 (5)0.041 (4)0.003 (4)0.013 (4)0.007 (4)
C130.045 (5)0.055 (5)0.032 (4)0.004 (4)0.010 (4)0.013 (4)
C140.036 (4)0.042 (4)0.033 (4)0.009 (4)0.007 (3)0.006 (4)
C150.054 (5)0.052 (5)0.039 (4)0.011 (4)0.018 (4)0.002 (4)
C160.039 (6)0.074 (7)0.068 (6)0.009 (5)0.019 (5)0.004 (5)
C170.050 (6)0.064 (6)0.068 (7)0.013 (5)0.004 (5)0.004 (5)
C180.075 (7)0.066 (7)0.032 (5)0.012 (5)0.004 (5)0.006 (4)
C190.042 (5)0.054 (5)0.038 (4)0.009 (4)0.011 (4)0.005 (4)
C200.045 (5)0.044 (5)0.035 (4)0.019 (4)0.012 (4)0.001 (4)
C210.027 (4)0.047 (5)0.032 (4)0.005 (3)0.004 (3)0.003 (4)
C220.035 (4)0.063 (5)0.031 (4)0.009 (4)0.008 (3)0.002 (4)
C230.039 (5)0.067 (5)0.053 (5)0.021 (4)0.015 (4)0.017 (5)
C240.070 (7)0.087 (6)0.038 (5)0.037 (5)0.023 (5)0.008 (5)
C250.051 (5)0.073 (6)0.035 (4)0.025 (5)0.008 (4)0.001 (4)
C260.037 (5)0.033 (4)0.047 (5)0.013 (4)0.006 (4)0.006 (4)
C270.034 (5)0.041 (5)0.039 (4)0.005 (4)0.011 (4)0.008 (4)
C280.039 (4)0.050 (5)0.030 (4)0.002 (3)0.006 (4)0.006 (3)
C290.072 (6)0.051 (5)0.052 (5)0.015 (4)0.036 (5)0.014 (4)
C300.032 (5)0.063 (5)0.068 (6)0.012 (4)0.018 (4)0.028 (5)
C310.046 (5)0.062 (6)0.049 (5)0.001 (4)0.011 (4)0.012 (5)
C320.057 (6)0.035 (5)0.058 (5)0.003 (4)0.007 (5)0.008 (4)
C330.057 (6)0.042 (5)0.049 (5)0.006 (4)0.003 (4)0.009 (4)
C340.058 (6)0.098 (7)0.060 (6)0.003 (6)0.019 (5)0.010 (5)
C350.062 (7)0.112 (9)0.055 (6)0.025 (6)0.004 (6)0.001 (6)
C360.072 (8)0.080 (7)0.055 (6)0.026 (6)0.001 (6)0.004 (6)
C370.068 (8)0.114 (9)0.052 (6)0.005 (6)0.009 (6)0.020 (6)
C380.057 (6)0.101 (7)0.060 (6)0.006 (5)0.014 (5)0.004 (6)
Geometric parameters (Å, º) top
Br1—C41.903 (7)C17—C181.353 (11)
Br2—C101.906 (7)C17—H170.9300
Br3—C231.917 (8)C18—C191.404 (10)
Br4—C291.925 (8)C18—H180.9300
N1—C11.366 (8)C19—H190.9300
N1—C71.403 (8)C20—C251.379 (11)
N1—C131.461 (7)C20—C211.414 (9)
N2—C201.371 (10)C21—C221.398 (9)
N2—C261.393 (10)C21—C271.431 (9)
N2—C321.458 (9)C22—C231.374 (9)
C1—C61.392 (9)C22—H220.9300
C1—C21.413 (9)C23—C241.365 (10)
C2—C31.390 (10)C24—C251.391 (11)
C2—C81.428 (10)C24—H240.9300
C3—C41.356 (10)C25—H250.9300
C3—H30.9300C26—C311.384 (11)
C4—C51.393 (10)C26—C271.413 (10)
C5—C61.386 (10)C27—C281.395 (9)
C5—H50.9300C28—C291.361 (9)
C6—H60.9300C28—H280.9300
C7—C121.381 (9)C29—C301.395 (10)
C7—C81.402 (9)C30—C311.353 (11)
C8—C91.392 (9)C30—H300.9300
C9—C101.373 (9)C31—H310.9300
C9—H90.9300C32—C331.508 (10)
C10—C111.397 (10)C32—H32A0.9700
C11—C121.356 (10)C32—H32B0.9700
C11—H110.9300C33—C341.370 (11)
C12—H120.9300C33—C381.382 (11)
C13—C141.505 (9)C34—C351.372 (12)
C13—H13A0.9700C34—H340.9300
C13—H13B0.9700C35—C361.370 (13)
C14—C191.372 (10)C35—H350.9300
C14—C151.377 (9)C36—C371.367 (11)
C15—C161.388 (11)C36—H360.9300
C15—H150.9300C37—C381.378 (12)
C16—C171.345 (12)C37—H370.9300
C16—H160.9300C38—H380.9300
C1—N1—C7108.2 (6)C14—C19—C18119.9 (8)
C1—N1—C13127.1 (6)C14—C19—H19120.0
C7—N1—C13123.9 (6)C18—C19—H19120.0
C20—N2—C26108.7 (6)N2—C20—C25130.4 (8)
C20—N2—C32125.3 (7)N2—C20—C21109.0 (6)
C26—N2—C32125.8 (7)C25—C20—C21120.6 (8)
N1—C1—C6129.3 (7)C22—C21—C20120.0 (7)
N1—C1—C2109.6 (6)C22—C21—C27132.9 (7)
C6—C1—C2121.1 (7)C20—C21—C27107.0 (6)
C3—C2—C1119.2 (7)C23—C22—C21117.6 (7)
C3—C2—C8134.5 (7)C23—C22—H22121.2
C1—C2—C8106.3 (6)C21—C22—H22121.2
C4—C3—C2119.1 (7)C24—C23—C22122.8 (7)
C4—C3—H3120.4C24—C23—Br3118.6 (6)
C2—C3—H3120.4C22—C23—Br3118.6 (6)
C3—C4—C5122.3 (7)C23—C24—C25120.5 (7)
C3—C4—Br1120.7 (6)C23—C24—H24119.7
C5—C4—Br1117.0 (6)C25—C24—H24119.7
C6—C5—C4120.0 (7)C20—C25—C24118.5 (8)
C6—C5—H5120.0C20—C25—H25120.8
C4—C5—H5120.0C24—C25—H25120.8
C5—C6—C1118.3 (7)C31—C26—N2130.3 (7)
C5—C6—H6120.9C31—C26—C27120.9 (7)
C1—C6—H6120.9N2—C26—C27108.7 (7)
C12—C7—C8122.2 (7)C28—C27—C26119.5 (7)
C12—C7—N1129.4 (7)C28—C27—C21134.0 (7)
C8—C7—N1108.4 (6)C26—C27—C21106.5 (6)
C9—C8—C7119.0 (7)C29—C28—C27117.3 (7)
C9—C8—C2133.5 (7)C29—C28—H28121.3
C7—C8—C2107.4 (6)C27—C28—H28121.3
C10—C9—C8118.1 (7)C28—C29—C30123.4 (7)
C10—C9—H9120.9C28—C29—Br4117.2 (6)
C8—C9—H9120.9C30—C29—Br4119.4 (6)
C9—C10—C11121.8 (7)C31—C30—C29119.4 (8)
C9—C10—Br2119.0 (6)C31—C30—H30120.3
C11—C10—Br2119.1 (6)C29—C30—H30120.3
C12—C11—C10120.7 (8)C30—C31—C26119.3 (7)
C12—C11—H11119.7C30—C31—H31120.3
C10—C11—H11119.7C26—C31—H31120.3
C11—C12—C7118.1 (7)N2—C32—C33112.9 (5)
C11—C12—H12120.9N2—C32—H32A109.0
C7—C12—H12120.9C33—C32—H32A109.0
N1—C13—C14115.3 (5)N2—C32—H32B109.0
N1—C13—H13A108.5C33—C32—H32B109.0
C14—C13—H13A108.5H32A—C32—H32B107.8
N1—C13—H13B108.5C34—C33—C38117.4 (8)
C14—C13—H13B108.5C34—C33—C32122.1 (8)
H13A—C13—H13B107.5C38—C33—C32120.5 (8)
C19—C14—C15119.0 (7)C33—C34—C35121.7 (9)
C19—C14—C13120.4 (7)C33—C34—H34119.1
C15—C14—C13120.6 (6)C35—C34—H34119.1
C14—C15—C16120.6 (7)C36—C35—C34119.6 (10)
C14—C15—H15119.7C36—C35—H35120.2
C16—C15—H15119.7C34—C35—H35120.2
C17—C16—C15119.4 (8)C37—C36—C35120.4 (10)
C17—C16—H16120.3C37—C36—H36119.8
C15—C16—H16120.3C35—C36—H36119.8
C16—C17—C18121.8 (9)C36—C37—C38118.9 (9)
C16—C17—H17119.1C36—C37—H37120.6
C18—C17—H17119.1C38—C37—H37120.6
C17—C18—C19119.3 (8)C37—C38—C33121.9 (9)
C17—C18—H18120.4C37—C38—H38119.0
C19—C18—H18120.4C33—C38—H38119.0
C7—N1—C1—C6178.1 (7)C26—N2—C20—C25179.9 (7)
C13—N1—C1—C68.1 (12)C32—N2—C20—C254.1 (12)
C7—N1—C1—C21.1 (8)C26—N2—C20—C210.0 (8)
C13—N1—C1—C2171.1 (6)C32—N2—C20—C21175.8 (6)
N1—C1—C2—C3179.2 (6)N2—C20—C21—C22178.1 (6)
C6—C1—C2—C30.1 (10)C25—C20—C21—C222.0 (10)
N1—C1—C2—C80.5 (8)N2—C20—C21—C270.9 (8)
C6—C1—C2—C8179.8 (6)C25—C20—C21—C27179.2 (6)
C1—C2—C3—C40.9 (10)C20—C21—C22—C231.2 (10)
C8—C2—C3—C4178.6 (8)C27—C21—C22—C23177.6 (7)
C2—C3—C4—C51.6 (11)C21—C22—C23—C240.3 (11)
C2—C3—C4—Br1178.3 (5)C21—C22—C23—Br3179.1 (5)
C3—C4—C5—C61.2 (11)C22—C23—C24—C250.2 (11)
Br1—C4—C5—C6178.7 (5)Br3—C23—C24—C25179.3 (6)
C4—C5—C6—C10.1 (10)N2—C20—C25—C24178.4 (7)
N1—C1—C6—C5178.6 (7)C21—C20—C25—C241.8 (11)
C2—C1—C6—C50.5 (10)C23—C24—C25—C200.9 (11)
C1—N1—C7—C12177.9 (7)C20—N2—C26—C31178.6 (8)
C13—N1—C7—C127.4 (12)C32—N2—C26—C315.6 (12)
C1—N1—C7—C82.3 (8)C20—N2—C26—C270.9 (8)
C13—N1—C7—C8172.7 (6)C32—N2—C26—C27176.7 (6)
C12—C7—C8—C91.0 (10)C31—C26—C27—C281.2 (10)
N1—C7—C8—C9179.1 (6)N2—C26—C27—C28179.2 (6)
C12—C7—C8—C2177.6 (7)C31—C26—C27—C21179.4 (6)
N1—C7—C8—C22.5 (8)N2—C26—C27—C211.4 (8)
C3—C2—C8—C91.8 (14)C22—C21—C27—C282.6 (13)
C1—C2—C8—C9177.7 (7)C20—C21—C27—C28179.3 (7)
C3—C2—C8—C7177.7 (8)C22—C21—C27—C26178.1 (7)
C1—C2—C8—C71.9 (8)C20—C21—C27—C261.4 (8)
C7—C8—C9—C100.0 (10)C26—C27—C28—C292.5 (10)
C2—C8—C9—C10175.5 (7)C21—C27—C28—C29178.3 (7)
C8—C9—C10—C110.1 (10)C27—C28—C29—C303.4 (11)
C8—C9—C10—Br2178.3 (5)C27—C28—C29—Br4179.2 (5)
C9—C10—C11—C120.7 (11)C28—C29—C30—C312.8 (11)
Br2—C10—C11—C12179.2 (5)Br4—C29—C30—C31179.8 (6)
C10—C11—C12—C71.6 (11)C29—C30—C31—C261.3 (11)
C8—C7—C12—C111.8 (11)N2—C26—C31—C30178.1 (7)
N1—C7—C12—C11178.3 (7)C27—C26—C31—C300.6 (11)
C1—N1—C13—C14107.4 (8)C20—N2—C32—C3390.7 (9)
C7—N1—C13—C1484.0 (8)C26—N2—C32—C3384.5 (9)
N1—C13—C14—C19118.0 (7)N2—C32—C33—C3499.7 (9)
N1—C13—C14—C1563.6 (8)N2—C32—C33—C3879.8 (10)
C19—C14—C15—C161.4 (10)C38—C33—C34—C350.8 (13)
C13—C14—C15—C16179.8 (7)C32—C33—C34—C35178.7 (8)
C14—C15—C16—C172.3 (12)C33—C34—C35—C360.9 (15)
C15—C16—C17—C181.8 (14)C34—C35—C36—C370.9 (15)
C16—C17—C18—C190.5 (14)C35—C36—C37—C380.8 (15)
C15—C14—C19—C180.0 (10)C36—C37—C38—C330.7 (15)
C13—C14—C19—C18178.4 (6)C34—C33—C38—C370.8 (13)
C17—C18—C19—C140.5 (12)C32—C33—C38—C37178.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br3i0.933.003.800 (4)146
C12—H12···Br1ii0.933.013.724 (4)135
C25—H25···Br4iii0.932.973.852 (4)158
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H13Br2N
Mr415.12
Crystal system, space groupMonoclinic, Cc
Temperature (K)294
a, b, c (Å)39.113 (6), 4.5063 (7), 20.469 (3)
β (°) 116.449 (2)
V3)3230.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)5.01
Crystal size (mm)0.24 × 0.18 × 0.14
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 1997)
Tmin, Tmax0.310, 0.496
No. of measured, independent and
observed [I > 2σ(I)] reflections
8574, 5698, 3115
Rint0.043
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.095, 0.94
No. of reflections5698
No. of parameters397
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40
Absolute structureFlack (1983), 2371 Friedel pairs.
Absolute structure parameter0.010 (11)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br3i0.933.003.800 (4)146
C12—H12···Br1ii0.933.013.724 (4)135
C25—H25···Br4iii0.932.973.852 (4)158
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x, y+2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds