organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo-5-meth­oxy­phen­yl)-8-chloro-6-(2-fluoro­phen­yl)-4H-1,2,4-triazolo[4,3-a][1,4]benzodiazepine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 10 October 2005; accepted 13 October 2005; online 22 October 2005)

The title compound, C23H15BrClFN4O, is an analogue of sedatives such as midazolam and alprazolam. Its geometrical parameters are normal and comparable with those of related compounds. The only possible significant inter­molecular inter­action is a C—H⋯O bond.

Comment

1,4-Benzodiazepine derivatives are widely used as daytime sedatives, tranquilizers, sleep inducers, anaesthetics, anti­convulsants and muscle relaxants (Block et al., 1989[Block, M. G., DiPardo, R. M., Evans, B. E., Rittle, K. E., Witter, W. L., Veber, D. F., Anderson, P. S. & Freidinger, R. M. (1989). J. Med. Chem. 32, 13-16.]; Di Braccio et al., 2001[Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]; Hollister, 1983[Hollister, L. E. (1983). J. Psychoactive Drugs, 15, 41-44.]; Moroz, 2004[Moroz, G. (2004). J. Clin. Psychiatry, 65, 13-18.]). Five-atom heterocyclic fused benzodiazepine ring systems occupy a prominent place among drugs for treatment of central nervous system (CNS) disorders (Robol et al., 1996[Robol, J. A., Cimarusti, M. P., Simpkins, L. M., Brown, B., Ryono, D. E., Bird, M. M., Asad, T. R., Schaeffer, N. C. & Trippodo, N. C. (1996). J. Med. Chem. 39, 494-502.]; Wang et al., 1999[Wang, T., Lui, A. S. & Cloudsdale, I. S. (1999). Org. Lett. 1, 1835-1837.]; Novelli et al., 1999[Novelli, F., Sparatore, F. A., Tassso, B. & Sparatore, F. (1999). Bioorg. Med. Chem. Lett. 9, 3031-3034.]; Evans et al., 2001[Evans, B., Pipe, A., Clarke, L. & Banks, M. (2001). Bioorg. Med. Chem. Lett. 11, 1297-1300.]).

[Scheme 1]

The title compound, (I)[link], C23H15BrClFN4O, (Fig. 1[link]), which appears to have promising physiological properties, comparable with those of diazepam (Valium), is a structural analogue of well known CNS depressant drugs such as midazolam, (II), and alprazolam, C17H13ClN4, (III). To confirm the structural relationship of (I)[link] to these drugs, its crystal structure is presented here.

The geometrical parameters for (I)[link] fall within their expected ranges (Allen et al., 1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685-706. Dordrecht: Kluwer.]), although the C10—N2—C16 bond angle of 131.51 (18)° is notably obtuse. Atom C7 is displaced from the fluoro­benzene mean plane by 0.108 (4) Å. The Br atom is significantly displaced [by 0.154 (3) Å] from the plane of the benzenel ring to which it is attached. The dihedral angles between the various rings in (I)[link] are as follows, where a single atom is used to identify its five- or six-membered ring: C1/C12 62.23 (10); C1/C17 6.12 (11); C1/N3 50.99 (11); C12/C17 64.24 (10); C12/N3 38.05 (11); N3/C17 56.43 (11)°.

The bond distances within the five-membered ring (Table 1[link]) suggest that the C9—N3 and C16—N4 bonds have far more double-bond character than do N3—N4, C9—N2 and C16—N2, i.e. the canonical form shown in the scheme is probably the most significant contributor to the overall structure. The bond angle sums about atoms C7 (359.6°), C9 (360.0°), C16 (360.0°) and N2 (359.7°) suggest that all these atoms are well regarded as being sp2 hybridized.

The seven-membered diazepine ring (C7/C11/C10/N2/C9/C8/N1) in (I)[link] is far from planar, and its shape approximates to a twist chair (Hendrickson, 1967[Hendrickson, D. J. (1967). J. Am. Chem. Soc. 89, 7047-7061.]) with a pseudo-twofold axis passing through C9 and the C7—C11 bond midpoint, if such a description is valid for a seven-membered ring containing multiple bonds. However, the pattern of the torsion angles of the seven-membered ring is also close to reflecting Cs symmetry. In the structure of alprazolam dihydrate (Vega et al., 1999[Vega, D. R., Baggio, R. & Russi, S. (1999). Acta Cryst. C55, 2094-2096.]), a similar ring conformation was described as a boat. In this description applied to (I)[link], atoms C7, C9, N1 and N2 form the bottom of the boat (r.m.s. deviation from the mean plane = 0.017 Å), C8 the prow, and C10 and C11 the stern [deviations from the C7/C9/N1/N2 mean plane = 0.686 (3), 0.666 (3) and 0.698 (3) Å, respectively].

The crystal packing in (I)[link], shown in Fig. 2[link], results in (10[\overline{1}]) sheets of mol­ecules. Apart from a possible C—H⋯N inter­action (Table 2[link]), which might help to provide coherence between adjacent (10[\overline{1}]) sheets, there are few significant inter­molecular inter­actions in (I)[link]. Any ππ stacking must be extremely weak, the smallest centroid⋯centroid separation being 4.11 Å. No C—H⋯π inter­actions were identified in a PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link].

[Figure 1]
Figure 1
View of (I)[link], showing 30% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2]
Figure 2
The packing in (I)[link], viewed approximately down [010]. H atoms have been omitted.

Experimental

7-Chloro-5-(2-fluoro­phen­yl)-1,3-dihydro-2H-1,4-benzodiazepine-2-thione (3.06 g, 0.01 mol) was reacted with 2-bromo-5-meth­oxy benzoic hydrazide (2.45 g, 0.01 mol) by refluxing in n-butanol (50 ml) with a catalytic amount of acetic acid (0.1 ml) to result in crude (I)[link]. The crude product was purified by silica-gel column chromatograpy using dichloromethane as eluent (yield 78%) and recrystallized from acetone as pale-yellow crystals (m.p. 493 K). FT–IR (KBr, cm−1): 3055 and 2926 (–CH), 1609 (–C=N), 1482 (–CH2), 1297 (Ar—F), 1018 (Ar—Cl). 1H NMR (CDCl3, δ, p.p.m.): 3.82 (s, 3H, –OCH3), 4.22 (d, J = 13.2 Hz, 1H, –CH2), 5.64 (d, J = 13.2 Hz, 1H, –CH2), 6.85 (d, J = 8.4 Hz, 1H, ArH), 6.95 (dd, J = 8.7 and 9.3 Hz, 2H, Ar—H), 7.07 (t, 1H, Ar—H), 7.16–7.32 (m, 1H, Ar—H), 7.45–7.52 (m, 4H, Ar—H), 7.67 (t, 1H, Ar—H). 13C NMR (CDCl3, 75 MHz, δ, p.p.m.): 46.34, 55.70, 116.23, 116.53, 118.93, 124.64, 129.24, 130.25, 131.58, 132.58, 133.37, 134.29, 155.30, 159.15, 165.38.

Crystal data
  • C23H15BrClFN4O

  • Mr = 497.75

  • Monoclinic, C 2/c

  • a = 17.0109 (6) Å

  • b = 11.5436 (4) Å

  • c = 20.6095 (6) Å

  • β = 92.2816 (17)°

  • V = 4043.8 (2) Å3

  • Z = 8

  • Dx = 1.635 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4476 reflections

  • θ = 2.9–27.5°

  • μ = 2.20 mm−1

  • T = 120 (2) K

  • Block, pale yellow

  • 0.36 × 0.32 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.505, Tmax = 0.620

  • 17959 measured reflections

  • 4636 independent reflections

  • 3545 reflections with I > 2σ(I)

  • Rint = 0.043

  • θmax = 27.5°

  • h = −19 → 22

  • k = −14 → 14

  • l = −26 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 1.03

  • 4636 reflections

  • 282 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0276P)2 + 3.972P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00038 (7)

Table 1
Selected geometric parameters (Å, °)[link]

C6—C7 1.493 (3)
C7—N1 1.283 (3)
C7—C11 1.496 (3)
C9—N3 1.302 (3)
C9—N2 1.380 (3)
C16—N4 1.314 (3)
C16—N2 1.383 (3)
N3—N4 1.390 (3)
F1—C1—C6—C7 −6.3 (3)
N1—C8—C9—N3 113.4 (2)
N1—C8—C9—N2 −66.0 (3)
C16—C17—C18—Br1 1.2 (3)
C15—C10—N2—C16 34.3 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N4i 0.95 2.42 3.244 (3) 145
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

1-(2-Bromo-5-methoxyphenyl)-8-chloro-6-(2-fluorophenyl)- 4H-1,2,4-triazolo[4,3-a][1,4]benzodiazepine top
Crystal data top
C23H15BrClFN4OF(000) = 2000
Mr = 497.75Dx = 1.635 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4476 reflections
a = 17.0109 (6) Åθ = 2.9–27.5°
b = 11.5436 (4) ŵ = 2.20 mm1
c = 20.6095 (6) ÅT = 120 K
β = 92.2816 (17)°Block, pale yellow
V = 4043.8 (2) Å30.36 × 0.32 × 0.24 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4636 independent reflections
Radiation source: fine-focus sealed tube3545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1922
Tmin = 0.505, Tmax = 0.620k = 1414
17959 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0276P)2 + 3.972P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4636 reflectionsΔρmax = 0.41 e Å3
282 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00038 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29527 (13)0.03453 (19)0.14939 (10)0.0186 (5)
C20.31284 (15)0.01748 (19)0.09168 (11)0.0225 (5)
H20.27400.05980.06720.027*
C30.38893 (15)0.0064 (2)0.07022 (11)0.0256 (6)
H30.40240.04060.03030.031*
C40.44510 (15)0.0543 (2)0.10690 (11)0.0254 (6)
H40.49740.06000.09270.030*
C50.42487 (14)0.10679 (19)0.16437 (11)0.0201 (5)
H50.46370.14880.18910.024*
C60.34883 (13)0.09925 (18)0.18672 (10)0.0162 (5)
C70.32824 (13)0.16341 (18)0.24659 (10)0.0160 (5)
C80.36680 (13)0.2444 (2)0.34771 (10)0.0197 (5)
H8A0.35270.32300.33200.024*
H8B0.41510.25060.37590.024*
C90.30212 (13)0.19739 (18)0.38564 (10)0.0166 (5)
C100.20196 (13)0.23708 (18)0.29772 (10)0.0148 (5)
C110.25103 (13)0.22564 (18)0.24509 (10)0.0145 (4)
C120.22626 (13)0.27568 (18)0.18603 (10)0.0168 (5)
H120.25840.26900.14950.020*
C130.15616 (13)0.33444 (18)0.18002 (10)0.0177 (5)
C140.10730 (13)0.34409 (19)0.23184 (10)0.0194 (5)
H140.05850.38370.22710.023*
C150.13075 (13)0.29515 (19)0.29064 (10)0.0177 (5)
H150.09780.30130.32660.021*
C160.18369 (13)0.14398 (18)0.40899 (10)0.0167 (5)
C170.09854 (13)0.12232 (18)0.40969 (10)0.0168 (5)
C180.05775 (14)0.04967 (19)0.36588 (10)0.0190 (5)
C190.02163 (14)0.0307 (2)0.37113 (11)0.0244 (5)
H190.04890.01740.34040.029*
C200.06211 (14)0.0812 (2)0.42102 (11)0.0250 (5)
H200.11690.06770.42450.030*
C210.02190 (14)0.1514 (2)0.46569 (10)0.0209 (5)
C220.05765 (14)0.17254 (19)0.45944 (10)0.0192 (5)
H220.08460.22220.48960.023*
C230.13683 (15)0.1847 (2)0.52609 (12)0.0305 (6)
H23A0.15320.22760.56430.046*
H23B0.14630.10180.53230.046*
H23C0.16720.21170.48760.046*
N10.38193 (11)0.16916 (15)0.29199 (8)0.0176 (4)
N20.22620 (10)0.19133 (15)0.35967 (8)0.0154 (4)
N30.30634 (11)0.15665 (16)0.44457 (8)0.0200 (4)
N40.23087 (11)0.12220 (16)0.45954 (8)0.0199 (4)
F10.22125 (8)0.01895 (11)0.17111 (6)0.0242 (3)
O10.05502 (10)0.20385 (14)0.51736 (7)0.0278 (4)
Cl10.12993 (4)0.39768 (5)0.10587 (3)0.02819 (16)
Br10.112657 (15)0.03066 (2)0.301251 (11)0.02696 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (12)0.0191 (12)0.0213 (11)0.0029 (10)0.0009 (9)0.0025 (9)
C20.0272 (14)0.0195 (12)0.0204 (11)0.0029 (10)0.0045 (10)0.0002 (9)
C30.0326 (15)0.0258 (13)0.0186 (11)0.0089 (11)0.0038 (11)0.0000 (10)
C40.0210 (13)0.0285 (14)0.0272 (12)0.0074 (11)0.0068 (10)0.0007 (11)
C50.0146 (12)0.0207 (12)0.0250 (12)0.0022 (10)0.0002 (9)0.0006 (10)
C60.0151 (12)0.0150 (12)0.0183 (10)0.0023 (9)0.0012 (9)0.0029 (9)
C70.0141 (12)0.0146 (11)0.0194 (11)0.0016 (9)0.0026 (9)0.0024 (9)
C80.0147 (12)0.0203 (12)0.0238 (11)0.0004 (10)0.0033 (10)0.0039 (9)
C90.0140 (12)0.0161 (12)0.0195 (11)0.0006 (9)0.0030 (9)0.0056 (9)
C100.0148 (12)0.0136 (11)0.0156 (10)0.0026 (9)0.0023 (9)0.0003 (8)
C110.0117 (11)0.0133 (11)0.0185 (10)0.0015 (9)0.0001 (9)0.0010 (9)
C120.0148 (12)0.0166 (12)0.0194 (11)0.0016 (9)0.0034 (9)0.0010 (9)
C130.0195 (13)0.0152 (12)0.0183 (11)0.0002 (9)0.0006 (9)0.0041 (9)
C140.0132 (12)0.0200 (12)0.0249 (11)0.0046 (10)0.0015 (9)0.0003 (10)
C150.0149 (12)0.0203 (12)0.0182 (11)0.0000 (9)0.0021 (9)0.0021 (9)
C160.0207 (13)0.0149 (11)0.0146 (10)0.0001 (9)0.0001 (9)0.0039 (9)
C170.0161 (12)0.0180 (12)0.0162 (10)0.0002 (9)0.0006 (9)0.0008 (9)
C180.0210 (13)0.0196 (12)0.0165 (10)0.0007 (10)0.0025 (9)0.0023 (9)
C190.0234 (14)0.0256 (14)0.0238 (12)0.0061 (11)0.0027 (10)0.0055 (10)
C200.0165 (13)0.0310 (14)0.0274 (12)0.0050 (11)0.0011 (10)0.0009 (11)
C210.0219 (13)0.0225 (13)0.0188 (11)0.0009 (10)0.0044 (10)0.0021 (9)
C220.0210 (13)0.0214 (12)0.0153 (10)0.0033 (10)0.0009 (9)0.0008 (9)
C230.0224 (14)0.0385 (15)0.0313 (13)0.0028 (12)0.0122 (11)0.0005 (12)
N10.0138 (10)0.0200 (10)0.0193 (9)0.0012 (8)0.0019 (8)0.0009 (8)
N20.0121 (10)0.0188 (10)0.0152 (9)0.0001 (8)0.0003 (7)0.0022 (7)
N30.0172 (11)0.0243 (11)0.0181 (9)0.0004 (8)0.0020 (8)0.0035 (8)
N40.0173 (11)0.0254 (11)0.0169 (9)0.0001 (8)0.0009 (8)0.0021 (8)
F10.0158 (7)0.0282 (8)0.0286 (7)0.0040 (6)0.0011 (6)0.0051 (6)
O10.0202 (10)0.0389 (10)0.0248 (8)0.0015 (8)0.0083 (7)0.0073 (8)
Cl10.0323 (4)0.0294 (3)0.0227 (3)0.0115 (3)0.0001 (3)0.0086 (2)
Br10.02801 (15)0.02872 (16)0.02428 (13)0.00058 (11)0.00281 (10)0.01096 (10)
Geometric parameters (Å, º) top
C1—F11.365 (3)C12—H120.9500
C1—C21.376 (3)C13—C141.384 (3)
C1—C61.387 (3)C13—Cl11.736 (2)
C2—C31.390 (3)C14—C151.382 (3)
C2—H20.9500C14—H140.9500
C3—C41.385 (3)C15—H150.9500
C3—H30.9500C16—N41.314 (3)
C4—C51.386 (3)C16—N21.383 (3)
C4—H40.9500C16—C171.471 (3)
C5—C61.393 (3)C17—C221.388 (3)
C5—H50.9500C17—C181.397 (3)
C6—C71.493 (3)C18—C191.377 (3)
C7—N11.283 (3)C18—Br11.899 (2)
C7—C111.496 (3)C19—C201.388 (3)
C8—N11.471 (3)C19—H190.9500
C8—C91.478 (3)C20—C211.386 (3)
C8—H8A0.9900C20—H200.9500
C8—H8B0.9900C21—O11.366 (3)
C9—N31.302 (3)C21—C221.386 (3)
C9—N21.380 (3)C22—H220.9500
C10—C151.387 (3)C23—O11.428 (3)
C10—C111.401 (3)C23—H23A0.9800
C10—N21.427 (3)C23—H23B0.9800
C11—C121.397 (3)C23—H23C0.9800
C12—C131.373 (3)N3—N41.390 (3)
F1—C1—C2117.5 (2)C14—C13—Cl1120.29 (17)
F1—C1—C6118.89 (19)C15—C14—C13118.9 (2)
C2—C1—C6123.6 (2)C15—C14—H14120.6
C1—C2—C3118.2 (2)C13—C14—H14120.6
C1—C2—H2120.9C14—C15—C10120.7 (2)
C3—C2—H2120.9C14—C15—H15119.7
C4—C3—C2120.2 (2)C10—C15—H15119.7
C4—C3—H3119.9N4—C16—N2109.73 (19)
C2—C3—H3119.9N4—C16—C17122.04 (19)
C3—C4—C5119.9 (2)N2—C16—C17128.20 (18)
C3—C4—H4120.1C22—C17—C18118.5 (2)
C5—C4—H4120.1C22—C17—C16117.31 (19)
C4—C5—C6121.4 (2)C18—C17—C16124.05 (19)
C4—C5—H5119.3C19—C18—C17120.6 (2)
C6—C5—H5119.3C19—C18—Br1119.27 (17)
C1—C6—C5116.6 (2)C17—C18—Br1120.09 (17)
C1—C6—C7123.7 (2)C18—C19—C20120.6 (2)
C5—C6—C7119.60 (19)C18—C19—H19119.7
N1—C7—C6116.41 (19)C20—C19—H19119.7
N1—C7—C11126.09 (19)C21—C20—C19119.4 (2)
C6—C7—C11117.12 (18)C21—C20—H20120.3
N1—C8—C9110.69 (18)C19—C20—H20120.3
N1—C8—H8A109.5O1—C21—C22115.4 (2)
C9—C8—H8A109.5O1—C21—C20124.7 (2)
N1—C8—H8B109.5C22—C21—C20119.9 (2)
C9—C8—H8B109.5C21—C22—C17121.0 (2)
H8A—C8—H8B108.1C21—C22—H22119.5
N3—C9—N2111.07 (19)C17—C22—H22119.5
N3—C9—C8127.7 (2)O1—C23—H23A109.5
N2—C9—C8121.23 (18)O1—C23—H23B109.5
C15—C10—C11120.59 (19)H23A—C23—H23B109.5
C15—C10—N2119.53 (19)O1—C23—H23C109.5
C11—C10—N2119.86 (19)H23A—C23—H23C109.5
C12—C11—C10117.9 (2)H23B—C23—H23C109.5
C12—C11—C7116.78 (19)C7—N1—C8117.28 (19)
C10—C11—C7125.37 (18)C9—N2—C16104.10 (17)
C13—C12—C11120.9 (2)C9—N2—C10124.10 (18)
C13—C12—H12119.6C16—N2—C10131.51 (18)
C11—C12—H12119.6C9—N3—N4107.05 (17)
C12—C13—C14121.1 (2)C16—N4—N3108.04 (17)
C12—C13—Cl1118.62 (17)C21—O1—C23117.65 (18)
F1—C1—C2—C3177.41 (19)N2—C16—C17—C1860.2 (3)
C6—C1—C2—C31.3 (3)C22—C17—C18—C191.5 (3)
C1—C2—C3—C40.8 (3)C16—C17—C18—C19177.7 (2)
C2—C3—C4—C51.7 (3)C22—C17—C18—Br1175.01 (16)
C3—C4—C5—C60.5 (3)C16—C17—C18—Br11.2 (3)
F1—C1—C6—C5176.28 (18)C17—C18—C19—C201.6 (3)
C2—C1—C6—C52.4 (3)Br1—C18—C19—C20174.98 (18)
F1—C1—C6—C76.3 (3)C18—C19—C20—C210.1 (4)
C2—C1—C6—C7175.0 (2)C19—C20—C21—O1178.7 (2)
C4—C5—C6—C11.5 (3)C19—C20—C21—C221.4 (3)
C4—C5—C6—C7176.0 (2)O1—C21—C22—C17178.68 (19)
C1—C6—C7—N1146.1 (2)C20—C21—C22—C171.4 (3)
C5—C6—C7—N136.6 (3)C18—C17—C22—C210.0 (3)
C1—C6—C7—C1140.6 (3)C16—C17—C22—C21176.5 (2)
C5—C6—C7—C11136.8 (2)C6—C7—N1—C8172.24 (18)
N1—C8—C9—N3113.4 (2)C11—C7—N1—C80.4 (3)
N1—C8—C9—N266.0 (3)C9—C8—N1—C767.5 (2)
C15—C10—C11—C120.8 (3)N3—C9—N2—C160.8 (2)
N2—C10—C11—C12177.56 (18)C8—C9—N2—C16179.76 (19)
C15—C10—C11—C7178.9 (2)N3—C9—N2—C10175.23 (19)
N2—C10—C11—C72.7 (3)C8—C9—N2—C105.3 (3)
N1—C7—C11—C12137.3 (2)N4—C16—N2—C90.9 (2)
C6—C7—C11—C1235.4 (3)C17—C16—N2—C9177.0 (2)
N1—C7—C11—C1043.0 (3)N4—C16—N2—C10174.8 (2)
C6—C7—C11—C10144.3 (2)C17—C16—N2—C103.1 (4)
C10—C11—C12—C130.2 (3)C15—C10—N2—C9138.5 (2)
C7—C11—C12—C13179.93 (19)C11—C10—N2—C939.8 (3)
C11—C12—C13—C141.2 (3)C15—C10—N2—C1634.3 (3)
C11—C12—C13—Cl1178.42 (16)C11—C10—N2—C16147.3 (2)
C12—C13—C14—C151.1 (3)N2—C9—N3—N40.3 (2)
Cl1—C13—C14—C15178.47 (17)C8—C9—N3—N4179.8 (2)
C13—C14—C15—C100.1 (3)N2—C16—N4—N30.7 (2)
C11—C10—C15—C140.8 (3)C17—C16—N4—N3177.34 (19)
N2—C10—C15—C14177.52 (19)C9—N3—N4—C160.3 (2)
N4—C16—C17—C2254.2 (3)C22—C21—O1—C23179.9 (2)
N2—C16—C17—C22123.5 (2)C20—C21—O1—C230.2 (3)
N4—C16—C17—C18122.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N4i0.952.423.244 (3)145
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for data collection. HGA thanks the University of Mysore for accommodating his research.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlock, M. G., DiPardo, R. M., Evans, B. E., Rittle, K. E., Witter, W. L., Veber, D. F., Anderson, P. S. & Freidinger, R. M. (1989). J. Med. Chem. 32, 13–16.  CrossRef PubMed Web of Science Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, B., Pipe, A., Clarke, L. & Banks, M. (2001). Bioorg. Med. Chem. Lett. 11, 1297–1300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHendrickson, D. J. (1967). J. Am. Chem. Soc. 89, 7047–7061.  CrossRef CAS Web of Science Google Scholar
First citationHollister, L. E. (1983). J. Psychoactive Drugs, 15, 41–44.  CrossRef CAS PubMed Google Scholar
First citationMoroz, G. (2004). J. Clin. Psychiatry, 65, 13–18.  Web of Science PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNovelli, F., Sparatore, F. A., Tassso, B. & Sparatore, F. (1999). Bioorg. Med. Chem. Lett. 9, 3031–3034.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRobol, J. A., Cimarusti, M. P., Simpkins, L. M., Brown, B., Ryono, D. E., Bird, M. M., Asad, T. R., Schaeffer, N. C. & Trippodo, N. C. (1996). J. Med. Chem. 39, 494–502.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega, D. R., Baggio, R. & Russi, S. (1999). Acta Cryst. C55, 2094–2096.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, T., Lui, A. S. & Cloudsdale, I. S. (1999). Org. Lett. 1, 1835–1837.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds