organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Methyl-3,6-di­nitro­phen­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 17 October 2005; accepted 24 October 2005; online 27 October 2005)

The structure of the title compound, C9H9N3O5, was determined as one of a group of five related compounds in order to assess its suitability as a test material for the 2004 Cambridge Crystallographic Data Centre `Blind Structure Prediction Test'. The structure consists of hydrogen-bonded ribbons of mol­ecules stacked along the a axis with the benzene rings parallel by unit-cell translations.

Comment

The structure of the title material, (I)[link], was determined as part of the preparations for the 2004 Cambridge Crystallographic Data Centre `Blind Structure Prediction Tests' (Watkin et al., 2004[Watkin, D. J., Motherwell, W. D. S., Cooper, R. I. & Pantos, S. (2004). Acta Cryst. E60, o2295-o2297.]), though (I)[link] was not used in the test. The material was from a collection of nitro­toluene derivatives synthesized by Wilhelm Koerner about a century ago and retrieved from a depository at the University of Milan.

[Scheme 1]

The sample consisted of large, striated, pale-cream laths. Attempts were made to obtain a roughly isometric sample, but the specimens inevitably splintered freely if any attempt was made to cut them into shorter lengths. One was selected on the basis of its sharp diffraction pattern and relative thickness. Changes in illuminated volume were kept to a minimum by the data collection strategy, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The two nitro groups are twisted by almost the same angle from the plane of the benzene ring [C1—C2—N3—O5 = 143.3 (3)° and C9—C8—C11—O12 = −147.9 (3)°]. The almost planar acetamide group is rotated out of the ring plane [C9—C1—N14—C15 = 129.3 (3)°] (Fig. 1[link]).

The structure consists of ribbons of mol­ecules stacked with the benzene rings parallel by unit-cell translations along the a axis, giving an inter­planar separation of 3.618 (3) Å (Fig. 2[link]). Mol­ecules in these ribbons are linked together by hydrogen bonds (Fig. 3[link] and Table 1[link]). Other inter­molecular contacts are unexceptional.

[Figure 1]
Figure 1
The title compound, with atomic displacement parameters drawn at the 50% probability level and the H atoms with arbitary radii.
[Figure 2]
Figure 2
Projection along the b axis, showing the hydrogen bonding (dotted lines) and the aromatic ring stacking.
[Figure 3]
Figure 3
Projection along the a axis, showing the hydrogen-bonded (dotted lines) chain, with the benzene rings all on the same side of the c axis.

Experimental

The material was from a collection of nitro­toluene derivatives synthesized by Wilhelm Koerner about a century ago and retrieved from a depository at the University of Milan (Demartin et al., 2004[Demartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609-620.]). Details of the preparation and crystallization are unknown.

Crystal data
  • C9H9N3O5

  • Mr = 239.19

  • Monoclinic, P 21

  • a = 4.9309 (2) Å

  • b = 11.7571 (4) Å

  • c = 8.7944 (3) Å

  • β = 99.8608 (14)°

  • V = 502.31 (3) Å3

  • Z = 2

  • Dx = 1.581 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 939 reflections

  • θ = 5–27°

  • μ = 0.13 mm−1

  • T = 120 K

  • Lath, pale yellow

  • 0.76 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.80, Tmax = 0.99

  • 3452 measured reflections

  • 1188 independent reflections

  • 1188 reflections with I > −10σ(I)

  • Rint = 0.021

  • θmax = 27.5°

  • h = −6 → 6

  • k = −15 → 12

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.09

  • 1188 reflections

  • 154 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.02P)2 + 0.13P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H7⋯O16i 0.84 2.13 2.963 (2) 168
Symmetry code: (i) x-1, y, z.

In the absence of significant anomalous scattering, Friedel pairs were merged. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the target range 0.93–98 Å and N—H 0.86 Å) and isotropic displacement parameters [Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

N-(2-Methyl-3,6-dinitrophenyl)acetamide top
Crystal data top
C9H9N3O5F(000) = 248
Mr = 239.19Dx = 1.581 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.9309 (2) ÅCell parameters from 939 reflections
b = 11.7571 (4) Åθ = 5–27°
c = 8.7944 (3) ŵ = 0.13 mm1
β = 99.8608 (14)°T = 120 K
V = 502.31 (3) Å3Lath, pale-yellow
Z = 20.76 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1188 reflections with I > 10σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.80, Tmax = 0.99k = 1512
3452 measured reflectionsl = 1111
1188 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(F2) + (0.02P)2 + 0.13P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.09(Δ/σ)max = 0.000205
1188 reflectionsΔρmax = 0.21 e Å3
154 parametersΔρmin = 0.17 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4948 (3)0.14319 (14)0.28928 (18)0.0111
C20.7148 (3)0.18283 (14)0.39815 (18)0.0114
N30.8638 (3)0.10778 (13)0.51881 (15)0.0140
O40.7326 (3)0.03921 (12)0.58113 (14)0.0219
O51.1140 (2)0.12260 (12)0.55405 (15)0.0219
C60.8003 (3)0.29526 (15)0.40571 (18)0.0134
C70.6540 (3)0.37335 (15)0.30692 (19)0.0139
C80.4280 (3)0.33503 (15)0.20287 (18)0.0116
C90.3458 (3)0.22171 (15)0.18546 (18)0.0118
C100.1222 (3)0.17863 (15)0.06026 (19)0.0159
N110.2738 (3)0.42462 (13)0.10628 (16)0.0138
O120.4046 (3)0.50665 (11)0.07238 (15)0.0211
O130.0249 (2)0.41328 (11)0.06852 (15)0.0196
N140.4172 (3)0.02758 (12)0.27649 (17)0.0130
C150.5946 (3)0.05962 (14)0.26833 (18)0.0129
O160.8450 (2)0.04647 (11)0.28353 (14)0.0166
C170.4615 (3)0.17467 (14)0.2390 (2)0.0169
H610.95220.31890.47770.0171*
H710.70320.45110.31020.0169*
H730.26720.17110.25180.0263*
H720.46830.19410.13530.0281*
H40.55850.23010.30780.0284*
H70.24810.01180.26550.0178*
H10.17420.10340.02290.0241*
H20.05110.17120.10040.0240*
H30.09490.23340.02800.0238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0084 (6)0.0117 (8)0.0136 (7)0.0006 (6)0.0031 (5)0.0001 (6)
C20.0089 (7)0.0124 (8)0.0129 (7)0.0016 (6)0.0016 (5)0.0019 (6)
N30.0133 (6)0.0144 (7)0.0136 (6)0.0012 (6)0.0001 (5)0.0007 (6)
O40.0207 (6)0.0245 (7)0.0203 (6)0.0025 (6)0.0027 (5)0.0099 (6)
O50.0124 (5)0.0206 (7)0.0300 (7)0.0002 (5)0.0045 (5)0.0049 (6)
C60.0111 (7)0.0141 (8)0.0144 (7)0.0009 (6)0.0004 (5)0.0018 (7)
C70.0141 (7)0.0122 (7)0.0159 (8)0.0014 (6)0.0040 (6)0.0024 (6)
C80.0114 (7)0.0114 (7)0.0127 (7)0.0016 (6)0.0035 (6)0.0016 (6)
C90.0093 (6)0.0142 (8)0.0127 (7)0.0003 (6)0.0040 (6)0.0002 (6)
C100.0134 (7)0.0150 (8)0.0178 (8)0.0005 (6)0.0014 (6)0.0006 (7)
N110.0140 (6)0.0135 (7)0.0141 (6)0.0017 (6)0.0032 (5)0.0011 (6)
O120.0209 (6)0.0149 (6)0.0270 (7)0.0034 (5)0.0026 (5)0.0083 (5)
O130.0124 (5)0.0192 (7)0.0262 (6)0.0027 (5)0.0009 (5)0.0042 (6)
N140.0080 (5)0.0115 (7)0.0194 (7)0.0012 (5)0.0020 (5)0.0001 (6)
C150.0132 (7)0.0138 (8)0.0120 (7)0.0008 (6)0.0024 (5)0.0014 (6)
O160.0099 (5)0.0176 (6)0.0225 (6)0.0010 (5)0.0027 (4)0.0009 (5)
C170.0156 (7)0.0121 (8)0.0230 (8)0.0002 (7)0.0032 (6)0.0003 (7)
Geometric parameters (Å, º) top
C1—C21.398 (2)C9—C101.506 (2)
C1—C91.413 (2)C10—H10.992
C1—N141.411 (2)C10—H20.982
C2—N31.476 (2)C10—H31.000
C2—C61.386 (2)N11—O121.2250 (19)
N3—O41.221 (2)N11—O131.2228 (17)
N3—O51.2318 (17)N14—C151.358 (2)
C6—C71.380 (2)N14—H70.843
C6—H610.936C15—O161.2287 (18)
C7—C81.390 (2)C15—C171.506 (2)
C7—H710.945C17—H730.984
C8—C91.393 (2)C17—H720.947
C8—N111.479 (2)C17—H40.959
C2—C1—C9118.77 (15)C9—C10—H1110.1
C2—C1—N14122.93 (15)C9—C10—H2109.9
C9—C1—N14118.29 (14)H1—C10—H2109.2
C1—C2—N3121.71 (15)C9—C10—H3109.6
C1—C2—C6123.02 (15)H1—C10—H3109.0
N3—C2—C6115.20 (14)H2—C10—H3109.1
C2—N3—O4118.72 (13)C8—N11—O12117.40 (13)
C2—N3—O5116.77 (14)C8—N11—O13118.15 (14)
O4—N3—O5124.44 (14)O12—N11—O13124.44 (15)
C2—C6—C7118.84 (15)C1—N14—C15124.26 (14)
C2—C6—H61121.1C1—N14—H7118.0
C7—C6—H61120.0C15—N14—H7117.5
C6—C7—C8118.21 (16)N14—C15—O16122.96 (16)
C6—C7—H71121.4N14—C15—C17114.91 (13)
C8—C7—H71120.4O16—C15—C17122.14 (15)
C7—C8—C9124.57 (15)C15—C17—H73110.3
C7—C8—N11114.99 (15)C15—C17—H72107.2
C9—C8—N11120.43 (13)H73—C17—H72108.5
C1—C9—C8116.39 (14)C15—C17—H4110.2
C1—C9—C10119.16 (15)H73—C17—H4110.3
C8—C9—C10124.37 (15)H72—C17—H4110.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H7···O16i0.842.132.963 (2)168
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Professor Angelo Gavezzotti for obtaining the samples, Professor Lucio Merlini, Director of the Dipartmento di Scienze Molecolari Agroalimentari of the University of Milan, for generously donating them, and Professor Anna Arnoldi for help in their retrieval.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDemartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609–620.  Web of Science CSD CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Motherwell, W. D. S., Cooper, R. I. & Pantos, S. (2004). Acta Cryst. E60, o2295–o2297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds