organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Chloro­phen­yl)-2-(2-thien­yl)acrylo­nitrile: chains built from C—H⋯N hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 3 October 2005; accepted 5 October 2005; online 12 October 2005)

In the title compound, C13H8ClNS, the thio­phene ring is disordered over two orientations. The mol­ecules are linked into C(5) chains by a single C—H⋯N hydrogen bond.

Comment

The title compound, (I)[link], was prepared for use as an inter­mediate in the synthesis of new fused heterocyclic systems.

[Scheme 1]

The thio­phene rings are disordered over two orientations corresponding to a 180° rotation about the C2—C22 bond (Fig. 1[link]); the two conformers have unequal occupancy, with refined site-occupancy factors for the major and minor conformers of 0.802 (3) and 0.198 (3), respectively. The bond distances show no unexpected values; in particular, the C—N and C—C distances for the nitrile unit (Table 1[link]) are typical, where the mean values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) are 1.136 and 1.427 Å, respectively. The bond angles at C2 deviate significantly from regular trigonal geometry, while the C—C—N fragment is not quite linear. While both orientations of the thio­phene unit are almost coplanar with the central C=C double bond, the 4-chloro­phenyl ring is twisted well out of this plane. Thus, the dihedral angles between the plane of the central space unit C22—C2=C3—C31 and the planes of the adjacent rings are as follows: thiophene ring (major orientation) 5.7 (2)°, thiophene ring (minor orientation) 4.9 (5)° and aryl ring 38.2 (2)°.

The mol­ecules are linked by a single C—H⋯N hydrogen bond (Table 2[link]) into C(5) (Bernstein et al., 1995[Bernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains generated by the n-glide planes and running parallel to the [10[\overline{1}]] direction (Fig. 2[link]). Two such chains, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains: in particular ππ stacking inter­actions, and C—H⋯π(arene) and C—H⋯π(thio­phene) hydrogen bonds are all absent.

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme for (a) the major conformer and (b) the minor conformer. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a C(5) chain along [10[\overline{1}]] generated by the n-glide plane at y = 0.25. For the sake of clarity, H atoms not involved in the motif shown have been omitted, and only the major conformer is shown. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{1\over 2}]y, −[{1\over 2}] + z) and (−[{1\over 2}] + x, [{1\over 2}]y, [{1\over 2}] + z), respectively.

Experimental

A solution of 2-thio­phene­acetonitrile (2.87 mmol) and potassium tert-butoxide (0.53 mmol) in anhydrous ethanol (3 ml) was stirred at room temperature for 15 min; a solution of 4-chloro­benzaldehyde (2.87 mmol) in anhydrous ethanol (3 ml) was then added. The resulting precipitate was collected by filtration, washed with ethanol, dried and finally crystallized from dimethyl­formamide to give yellow crystals suitable for single-crystal X-ray diffraction.

Crystal data
  • C13H8ClNS

  • Mr = 245.72

  • Monoclinic, P 21 /n

  • a = 3.8142 (2) Å

  • b = 23.6852 (8) Å

  • c = 12.5319 (5) Å

  • β = 97.2160 (16)°

  • V = 1123.17 (8) Å3

  • Z = 4

  • Dx = 1.453 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2552 reflections

  • θ = 3.4–27.5°

  • μ = 0.49 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.866, Tmax = 0.943

  • 11691 measured reflections

  • 2552 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −4 → 4

  • k = −30 → 25

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.06

  • 2552 reflections

  • 145 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0351P)2 + 0.9116P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

C1—N1 1.147 (3)
C1—C2 1.448 (3)
C2—C3 1.346 (3)
N1—C1—C2 176.2 (2)
C1—C2—C3 120.69 (17)
C1—C2—C22 114.88 (15)
C3—C2—C22 124.33 (15)
C3—C2—C22—S21 4.2 (3)
C3—C2—C22—S21A −177.4 (2)
C2—C3—C31—C32 37.9 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.53 3.438 (2) 161
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). It was apparent at an early stage that the thio­phene unit was disordered over two sets of sites related by a rotation of 180° about the exocyclic C—C bond; the geometry of the minor orientation was restrained to match that of the major orientation, and the anisotropic displacement parameters for corresponding atoms in the two orientations were constrained to be equal. The deepest hole in the difference map is located 0.33 Å from the minor-occupancy atom S21A.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(E)-3-(4-Chlorophenyl)-2-(2-thienyl)acrylonitrile top
Crystal data top
C13H8ClNSF(000) = 504
Mr = 245.72Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2552 reflections
a = 3.8142 (2) Åθ = 3.4–27.5°
b = 23.6852 (8) ŵ = 0.49 mm1
c = 12.5319 (5) ÅT = 120 K
β = 97.2160 (16)°Needle, yellow
V = 1123.17 (8) Å30.30 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
2552 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
φ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3025
Tmin = 0.866, Tmax = 0.943l = 1616
11691 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.9116P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.55 e Å3
10 restraintsΔρmin = 1.02 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl340.34216 (14)0.50512 (2)0.68406 (4)0.02927 (16)
S210.7644 (2)0.14768 (3)0.45758 (5)0.0204 (2)0.802 (3)
S21A0.5909 (9)0.10747 (8)0.66549 (18)0.0204 (2)0.198 (3)
N10.3752 (5)0.22435 (8)0.80736 (14)0.0314 (4)
C10.4690 (5)0.22378 (8)0.72392 (15)0.0219 (4)
C20.5721 (5)0.21992 (8)0.61686 (14)0.0187 (4)
C30.5864 (5)0.26641 (8)0.55581 (15)0.0209 (4)
C220.6355 (5)0.16265 (6)0.58077 (9)0.0197 (4)
C230.5928 (8)0.11359 (6)0.63458 (17)0.0224 (4)0.802 (3)
C240.6664 (9)0.06308 (5)0.57986 (16)0.0224 (4)0.802 (3)
C250.7582 (9)0.07648 (5)0.48227 (16)0.0224 (4)0.802 (3)
C23A0.748 (5)0.1471 (4)0.4861 (7)0.0224 (4)0.198 (3)
C24A0.773 (4)0.0881 (4)0.4667 (8)0.0224 (4)0.198 (3)
C25A0.683 (4)0.0664 (4)0.5601 (7)0.0224 (4)0.198 (3)
C310.5370 (5)0.32511 (8)0.58827 (15)0.0197 (4)
C320.6649 (5)0.34480 (8)0.69114 (15)0.0206 (4)
C330.6102 (5)0.40037 (8)0.71952 (15)0.0214 (4)
C350.3042 (5)0.41834 (9)0.54241 (16)0.0242 (4)
C340.4250 (5)0.43614 (8)0.64543 (16)0.0214 (4)
C360.3651 (5)0.36295 (9)0.51405 (16)0.0240 (4)
H30.63350.26060.48400.025*
H230.51870.11310.70420.027*0.802 (3)
H240.65300.02590.60750.027*0.802 (3)
H250.81420.04900.43190.027*0.802 (3)
H23A0.80730.17430.43560.027*0.198 (3)
H24A0.83600.06910.40510.027*0.198 (3)
H25A0.67050.02650.56710.027*0.198 (3)
H320.78990.31990.74180.025*
H330.69900.41380.78920.026*
H350.18150.44360.49190.029*
H360.28850.35060.44280.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl340.0301 (3)0.0250 (3)0.0326 (3)0.0034 (2)0.0032 (2)0.0020 (2)
S210.0216 (3)0.0241 (3)0.0164 (4)0.0006 (2)0.0054 (3)0.0021 (3)
S21A0.0216 (3)0.0241 (3)0.0164 (4)0.0006 (2)0.0054 (3)0.0021 (3)
N10.0406 (11)0.0332 (10)0.0224 (9)0.0029 (8)0.0122 (8)0.0017 (8)
C10.0225 (10)0.0228 (10)0.0208 (10)0.0023 (8)0.0045 (8)0.0016 (8)
C20.0154 (9)0.0268 (10)0.0140 (8)0.0014 (7)0.0021 (7)0.0008 (7)
C30.0192 (9)0.0284 (10)0.0153 (9)0.0007 (8)0.0037 (7)0.0017 (8)
C220.0147 (9)0.0274 (10)0.0165 (9)0.0015 (7)0.0004 (7)0.0010 (8)
C230.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C240.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C250.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C23A0.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C24A0.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C25A0.0249 (7)0.0234 (7)0.0188 (8)0.0008 (6)0.0026 (7)0.0052 (6)
C310.0174 (9)0.0253 (10)0.0174 (9)0.0009 (7)0.0057 (7)0.0001 (8)
C320.0187 (9)0.0254 (10)0.0181 (9)0.0008 (8)0.0038 (7)0.0044 (8)
C330.0187 (9)0.0284 (10)0.0175 (9)0.0018 (8)0.0039 (7)0.0011 (8)
C350.0229 (10)0.0275 (11)0.0218 (9)0.0011 (8)0.0009 (8)0.0054 (8)
C340.0178 (9)0.0224 (10)0.0248 (10)0.0001 (7)0.0062 (8)0.0004 (8)
C360.0256 (10)0.0296 (11)0.0166 (9)0.0018 (8)0.0018 (8)0.0008 (8)
Geometric parameters (Å, º) top
C1—N11.147 (3)C24A—C25A1.3622 (11)
C1—C21.448 (3)C24A—H24A0.95
C2—C31.346 (3)C25A—H25A0.95
C2—C221.460 (2)C3—C311.467 (3)
C22—C23A1.3620 (11)C3—H30.95
C22—C231.3635 (10)C31—C361.395 (3)
C22—S21A1.7058 (10)C31—C321.400 (3)
C22—S211.7151 (9)C32—C331.386 (3)
S21—C251.7153C32—H320.95
C23—C241.4244 (10)C33—C341.383 (3)
C23—H230.95C33—H330.95
C24—C251.3516C35—C341.381 (3)
C24—H240.95C35—C361.386 (3)
C25—H250.95C35—H350.95
S21A—C25A1.7125 (11)C34—Cl341.744 (2)
C23A—C24A1.4240 (11)C36—H360.95
C23A—H23A0.95
N1—C1—C2176.2 (2)C25A—C24A—H24A129.4
C1—C2—C3120.69 (17)C23A—C24A—H24A129.4
C1—C2—C22114.88 (15)C24A—C25A—S21A123.1 (8)
C3—C2—C22124.33 (15)C24A—C25A—H25A118.5
C23A—C22—C23105.7 (5)S21A—C25A—H25A118.5
C23A—C22—C2127.1 (5)C2—C3—C31127.00 (17)
C23—C22—C2127.15 (12)C2—C3—H3116.5
C23A—C22—S21A113.7 (5)C31—C3—H3116.5
C2—C22—S21A119.07 (12)C36—C31—C32118.72 (18)
C23—C22—S21109.55 (13)C36—C31—C3119.34 (17)
C2—C22—S21123.26 (11)C32—C31—C3121.92 (17)
S21A—C22—S21117.65 (12)C33—C32—C31120.42 (18)
C22—S21—C2591.65 (8)C33—C32—H32119.8
C22—C23—C24115.77 (15)C31—C32—H32119.8
C22—C23—H23122.1C34—C33—C32119.33 (18)
C24—C23—H23122.1C34—C33—H33120.3
C25—C24—C23109.12 (9)C32—C33—H33120.3
C25—C24—H24125.4C34—C35—C36118.79 (18)
C23—C24—H24125.4C34—C35—H35120.6
C24—C25—S21113.90 (6)C36—C35—H35120.6
C24—C25—H25123.0C35—C34—C33121.51 (18)
S21—C25—H25123.0C35—C34—Cl34119.64 (15)
C22—S21A—C25A84.8 (4)C33—C34—Cl34118.84 (15)
C22—C23A—C24A116.7 (8)C35—C36—C31121.13 (18)
C22—C23A—H23A121.7C35—C36—H36119.4
C24A—C23A—H23A121.7C31—C36—H36119.4
C25A—C24A—C23A101.2 (9)
C3—C2—C22—C23A6.4 (10)S21—C22—S21A—C25A4.4 (7)
C1—C2—C22—C23A177.1 (10)C23—C22—C23A—C24A2.9 (17)
C3—C2—C22—C23173.3 (2)C2—C22—C23A—C24A176.8 (11)
C1—C2—C22—C233.2 (3)S21A—C22—C23A—C24A6.8 (19)
C1—C2—C22—S21A1.0 (3)S21—C22—C23A—C24A151 (11)
C3—C2—C22—S214.2 (3)C22—C23A—C24A—C25A2.9 (17)
C3—C2—C22—S21A177.4 (2)C23A—C24A—C25A—S21A2.3 (13)
C1—C2—C22—S21179.31 (14)C22—S21A—C25A—C24A5.1 (9)
C23A—C22—S21—C2526 (10)C1—C2—C3—C315.9 (3)
C23—C22—S21—C250.2 (2)C22—C2—C3—C31177.85 (18)
C2—C22—S21—C25178.08 (19)C2—C3—C31—C36143.7 (2)
S21A—C22—S21—C253.55 (17)C2—C3—C31—C3237.9 (3)
C23A—C22—C23—C241.1 (8)C36—C31—C32—C332.2 (3)
C2—C22—C23—C24178.7 (2)C3—C31—C32—C33179.30 (17)
S21A—C22—C23—C24157.0 (16)C31—C32—C33—C340.6 (3)
S21—C22—C23—C240.9 (4)C36—C35—C34—C331.3 (3)
C22—C23—C24—C251.3 (3)C36—C35—C34—Cl34178.44 (15)
C23—C24—C25—S211.13 (13)C32—C33—C34—C352.4 (3)
C22—S21—C25—C240.59 (9)C32—C33—C34—Cl34177.34 (14)
C23A—C22—S21A—C25A6.2 (12)C34—C35—C36—C311.6 (3)
C23—C22—S21A—C25A19.2 (12)C32—C31—C36—C353.4 (3)
C2—C22—S21A—C25A177.2 (6)C3—C31—C36—C35178.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.533.438 (2)161
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and DC thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds