Structure Reports

 OnlineISSN 1600-5368

Francesco Punzo, ${ }^{\text {a }} \ddagger$ David J. Watkin, ${ }^{\text {b }}$ David Hotchkiss ${ }^{c}$ and George W. J. Fleet ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Dipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, ${ }^{\text {b }}$ Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and ${ }^{\text {c }}$ Department of Organic
Chemistry, Chemical Research Laboratory,
Mansfield Road, Oxford OX1 3TA, England
\# Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA England

Correspondence e-mail: fpunzo@unict.it

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.061$
Data-to-parameter ratio $=10.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

2-C-Methyl-D-lyxono-1,4-lactone

The title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, has been crystallized for the first time, allowing the stereochemistry at C-2 and the ring size of the lactone to be firmly established.

Comment

The Kiliani ascension of ketoses (Hotchkiss et al., 2004; Soengas et al., 2005) provides ready access to a new class of branched carbohydrate scaffolds (Lichtenthaler \& Peters, 2004; Bols, 1996) with branched carbon chains. Although saccharinic acids, which are $2-C$-methyl aldonic acids, are formed in very low yields from treatment of aldoses or ketoses with aqueous calcium hydroxide (Whistler \& BeMiller, 1963), it has been shown that significantly higher yields may be obtained from the reaction of lime with ketoses (Hotchkiss et al., 2006) derived from the Amadori rearrangement (Hodge, 1955). D-Galactose reacted with dibenzylamine to form the Amadori ketose, (2) (Grunnagel \& Haas, 1969), in which the α-configuration at the anomeric position of the pyranose ring has been proved by X-ray crystallographic analysis (Harding et al., 2005). Treatment of (2) with aqueous calcium hydroxide allowed the isolation of a mixture of two epimeric lactones.

(1)
(2)

(3)

(4)

The structure of the minor isomer was confirmed as $2-C$ -methyl-D-xylono-1,4-lactone, (3), by an X-ray structure of its 3,5-acetonide (Watkin et al., 2005). The major product, 2-C-methyl-d-lyxono-1,4-lactone, (4), initially isolated as an oil, slowly crystallized, allowing the relative configuration at C-2 and the ring size of the lyxonolactone to be unambiguously assigned by X-ray crystallographic analysis.

Racemic lactone (4) has only been obtained as an oil (Lopez et al., 1984); the enantiomer of (4) has been prepared in low yield from l-sorbose (Ishizu et al., 1972). The absolute configuration of (4) was determined from the use of D-galactose (1) as the starting material.

Experimental

The lactone (4) \{m.p. 379-380K, $[\alpha]_{\mathrm{D}}{ }^{23}+70.4$ (c 0.87 in acetone) $\}$ was crystallized by dissolving it in acetone and allowing the slow evaporation of the solvent until colourless block-shaped crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$
$M_{r}=162.14$
Monoclinic, $C 2$
$a=18.6680(5) \AA$
$b=5.8280(2) \AA$
$c=6.3943(2) \AA$
$\beta=92.2219(14)^{\circ}$
$V=695.16(4) \AA^{3}$
$Z=4$
Data collection
Nonius KappaCCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.92, T_{\text {max }}=0.93$
1943 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.061$
$S=1.04$
1087 reflections
101 parameters
H-atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.549 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1011 \\
& \quad \text { reflections } \\
& \theta=5-30^{\circ} \\
& \mu=0.14 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.70 \times 0.60 \times 0.50 \mathrm{~mm}
\end{aligned}
$$

1087 independent reflections
1073 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-25 \rightarrow 26$
$k=-7 \rightarrow 8$
$l=-8 \rightarrow 9$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F^{2}\right)+(0.03 P)^{2}\right. \\
& \quad\quad 0.33 P] \\
&\left.\quad \text { where } P=\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001
\end{aligned} \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: Larson } \\
& \quad(1970), \text { equation } 22 \\
& \text { Extinction coefficient: } 4.90(3) \times 10^{2}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-C2	$1.5382(16)$	C3-O4	$1.4652(15)$
C1-C5	$1.5342(17)$	C3-C7	$1.5098(18)$
C1-O10	$1.4329(14)$	O4-C5	$1.3553(15)$
C1-C11	$1.5150(18)$	C5-O6	$1.2027(15)$
C2-C3	$1.5448(19)$	C7-O8	$1.4327(16)$
C2-O9	$1.4163(14)$		
C2-C1-C5	$100.95(9)$	C2-C3-O4	$103.36(9)$
C2-C1-O10	$112.80(9)$	C2-C3-C7	$117.44(10)$
C5-C1-O10	$107.55(10)$	O4-C3-C7	$109.87(11)$
C2-C1-C11	$114.56(10)$	C3-O4-C5	$112.01(10)$
C5-C1-C11	$113.52(10)$	C1-C5-O4	$110.53(10)$
O10-C1-C11	$107.29(9)$	C1-C5-O6	$128.09(11)$
C1-C2-C3	$104.94(10)$	O4-C5-O6	$121.36(12)$
C1-C2-O9	$115.82(10)$	C3-C7-O8	$110.46(10)$
C3-C2-O9	$114.94(10)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O10-H10 $\cdots \mathrm{O} 8$	0.81	1.90	$2.6770(13)$	159
O8-H8 $\cdots \mathrm{O}^{9}$	0.88	1.82	$2.6906(14)$	172
O9-H9 $\cdots \mathrm{O}^{\mathrm{i}} 0^{\mathrm{ii}}$	0.86	1.93	$2.7547(13)$	160

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y,-z+1$.

Figure 1
The molecular structure of (4), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.

Figure 2
Packing diagram of (4), viewed down the c axis. Hydrogen bonds are displayed with dashed lines.

In the absence of significant anomalous scattering, Friedel pairs were merged. H atoms were located in a difference density map. Those attached to C atoms were repositioned geometrically. H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$) and isotropic displacement parameters $\left[U_{\text {iso }}(H)=1.2-\right.$ $1.5 U_{\text {eq }}$ (parent atom)], after which their positions were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001); cell refinement: $D E N Z O$ and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O$ and $S C A L E P A C K$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Financial support from EPSRC (to DH) is acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley \& Sons, Inc.
Grunnagel, R. \& Haas, H. J. (1969). Annalen, 721, 234-235.
Harding, C. C., Cowley, A. R., Watkin, D. J., Punzo, F., Hotchkiss, D. J. \& Fleet, G. W. J. (2005). Acta Cryst. E61, o1475-o1477.

Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. \& Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. \& Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.

Ishizu, A., Yoshida, K. \& Yamazaki, N. (1972). Carbohydr. Res. 23, 23-29.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Lichtenthaler, F. W. \& Peters, S. (2004). C. R. Chim. 7, 65-90.
Lopez, A. F. J., Izquierdo, C. I. \& Portal, A. M. D. (1984). Carbohydr. Res. 129, 99-109.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, edited by C. W. Carter, Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. \& Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.
Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. \& Fleet, G. W. J. (2005). Acta Cryst. E61, o3302-o3303.

Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.
Whistler, R. L. \& BeMiller, J. N. (1963). Methods Carbohydr. Chem. 2, 484485.

supporting information

2-C-Methyl-d-lyxono-1,4-lactone

Francesco Punzo, David J. Watkin, David Hotchkiss and George W. J. Fleet

S1. Comment

The Kiliani ascension of ketoses (Hotchkiss et al., 2004; Soengas et al., 2005) provides ready access to a new class of branched carbohydrate scaffolds (Lichtenthaler \& Peters, 2004; Bols, 1996) with branched carbon chains. Although saccharinic acids - which are 2-C-methyl aldonic acids - are formed in very low yields from treatment of aldoses or ketoses with aqueous calcium hydroxide (Whistler \& BeMiller, 1963), it has been shown that significantly higher yields may be obtained from the reaction of lime with ketoses (Hotchkiss et al., 2006) derived from the Amadori rearrangement (Hodge, 1955). d-Galactose reacted with dibenzylamine to form the Amadori ketose (2) (Grunnagel \& Haas, 1969), in which the α-configuration at the anomeric position of the pyranose ring has been proved by X-ray crystallographic analysis (Harding et al., 2005). Treatment of (2) with aqueous calcium hydroxide allowed the isolation of a mixture of two epimeric lactones.
Table 1.
The structure of the minor isomer was confirmed as 2-C-methyl-d-xylono-1,4-lactone (3) by an X-ray structure of its 3,5-acetonide (Watkin et al., 2005). The major product 2-C-methyl-d-lyxono-1,4-lactone (4), initially isolated as an oil, slowly crystallized allowing the relative configuration at C-2 and the ring size of the lyxonolactone to be unambiguously assigned by X-ray crystallographic analysis.
Figure 1.
Racemic lactone (4) has only been obtained as an oil (Lopez et al., 1984); the enantiomer of (4) has been prepared in low yield from l-sorbose (Ishizu et al., 1982 or 1972). The absolute configuration of (4) is determined from the use of dgalactose (1) as the starting material.

Figure 2.

S2. Experimental

The lactone (4) (m.p. 379-380 K, $[\alpha]_{\mathrm{D}}{ }^{23}+70.4$ (c 0.87 in acetone)) was crystallized by dissolving it in acetone and allowing the slow evaporation of the solvent until colourless block-shaped crystals formed. The multi-scan technique was used to correct for changes in the illuminated volume.

S3. Refinement

Because the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Friedel pairs of reflections. H atoms were seen in a difference density synthesis. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}=0.96-0.98, \mathrm{O}-\mathrm{H}=0.81-0.88 \AA)$, after which they were refined as riding, with $\mathrm{U}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for those bonded to carbon, and $\mathrm{U}(\mathrm{H})=0.05 \AA^{2}$ for the hydroxy group.

Figure 1
The asymmetric unit of (4), with displacement ellipsoids drawn at the 50% probability level. H -atom radii are arbitrary.

Figure 2
Packing diagram of (4), viewed down the c axis. Hydrogen bonds are displayed with dashed lines.

2-C-Methyl-D-lyxono-1,4-lactone

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$
$M_{r}=162.14$
Monoclinic, C2
Hall symbol: C 2 y
$a=18.6680$ (5) \AA
$b=5.8280$ (2) \AA
$c=6.3943$ (2) \AA
$\beta=92.2219(14)^{\circ}$
$V=695.16(4) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Graphite monochromator
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.92, T_{\text {max }}=0.93$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.061$
$S=1.04$
1087 reflections
101 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
$F(000)=344$
$D_{\mathrm{x}}=1.549 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1011 reflections
$\theta=5-30^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.70 \times 0.60 \times 0.50 \mathrm{~mm}$

1943 measured reflections
1087 independent reflections
1073 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-25 \rightarrow 26$
$k=-7 \rightarrow 8$
$l=-8 \rightarrow 9$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.03 P)^{2}+0.33 P\right]$
where $\left.P=\left(F_{0}^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.000363$
$\Delta \rho_{\max }=0.22$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}
Extinction correction: Larson (1970), equation 22
Extinction coefficient: 490 (30)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{is} *} * / U_{\mathrm{eq}}$
C1	$0.62534(6)$	$-0.0653(2)$	$0.62746(18)$	0.0118
C2	$0.62752(6)$	$-0.1232(2)$	$0.39310(18)$	0.0118
C3	$0.66213(6)$	$0.0885(2)$	$0.29245(19)$	0.0134
O4	$0.70639(5)$	$0.18637(17)$	$0.46441(13)$	0.0153
C5	$0.68912(6)$	$0.0998(2)$	$0.65261(19)$	0.0139
O6	$0.72080(5)$	$0.1571(2)$	$0.81146(15)$	0.0203
C7	$0.61246(7)$	$0.2698(2)$	$0.20044(19)$	0.0160
O8	$0.56415(5)$	$0.34812(16)$	$0.35384(15)$	0.0177
O9	$0.56175(5)$	$-0.19459(17)$	$0.29616(14)$	0.0136
O10	$0.56216(4)$	$0.05895(18)$	$0.67885(13)$	0.0138
C11	$0.63081(7)$	$-0.2712(2)$	$0.7718(2)$	0.0161
H21	0.6625	-0.2465	0.3726	$0.0110 *$
H31	0.6924	0.0333	0.1831	0.0132^{*}

H71	0.6421	0.3972	0.1576	0.0166^{*}
H72	0.5877	0.2039	0.0787	0.0164^{*}
H111	0.6312	-0.2152	0.9153	0.0203^{*}
H112	0.6729	-0.3606	0.7480	0.0211^{*}
H113	0.5871	-0.3629	0.7458	0.0206^{*}
H10	0.5535	0.1590	0.5935	0.0169^{*}
H8	0.5610	0.4976	0.3450	0.0229^{*}
H9	0.5301	-0.0909	0.3159	0.0174^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0105(5)$	$0.0117(6)$	$0.0132(5)$	$-0.0010(4)$	$0.0008(4)$	$0.0004(4)$
C2	$0.0109(5)$	$0.0117(5)$	$0.0129(5)$	$0.0003(4)$	$0.0003(4)$	$-0.0008(5)$
C3	$0.0143(5)$	$0.0141(6)$	$0.0118(5)$	$-0.0018(5)$	$0.0012(4)$	$-0.0007(5)$
O4	$0.0148(4)$	$0.0181(5)$	$0.0132(4)$	$-0.0051(4)$	$0.0012(3)$	$0.0002(4)$
C5	$0.0116(5)$	$0.0155(6)$	$0.0147(5)$	$-0.0011(5)$	$0.0021(4)$	$0.0006(5)$
O6	$0.0181(4)$	$0.0271(6)$	$0.0154(4)$	$-0.0064(4)$	$-0.0016(3)$	$-0.0016(4)$
C7	$0.0210(6)$	$0.0135(6)$	$0.0134(5)$	$-0.0012(5)$	$0.0015(4)$	$0.0010(5)$
O8	$0.0217(5)$	$0.0109(5)$	$0.0209(4)$	$0.0011(4)$	$0.0054(3)$	$0.0021(4)$
O9	$0.0116(4)$	$0.0115(4)$	$0.0174(4)$	$0.0003(3)$	$-0.0015(3)$	$-0.0023(3)$
O10	$0.0124(4)$	$0.0140(4)$	$0.0152(4)$	$0.0011(4)$	$0.0026(3)$	$0.0005(4)$
C11	$0.0176(6)$	$0.0147(6)$	$0.0160(5)$	$0.0006(5)$	$0.0007(4)$	$0.0039(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.5382(16)$	$\mathrm{C} 5-\mathrm{O} 6$	$1.2027(15)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.5342(17)$	$\mathrm{C} 7-\mathrm{O} 8$	$1.4327(16)$
$\mathrm{C} 1-\mathrm{O} 10$	$1.4329(14)$	$\mathrm{C} 7-\mathrm{H} 71$	0.972
$\mathrm{C} 1-\mathrm{C} 11$	$1.5150(18)$	$\mathrm{C} 7-\mathrm{H} 72$	0.969
$\mathrm{C} 2-\mathrm{C} 3$	$1.5448(19)$	$\mathrm{O} 8-\mathrm{H} 8$	0.875
$\mathrm{C} 2-\mathrm{O} 9$	$1.4163(14)$	$\mathrm{O} 9-\mathrm{H} 9$	0.858
$\mathrm{C} 2-\mathrm{H} 21$	0.983	$\mathrm{O} 10-\mathrm{H} 10$	0.811
$\mathrm{C} 3-\mathrm{O} 4$	$1.4652(15)$	$\mathrm{C} 11-\mathrm{H} 111$	0.974
$\mathrm{C} 3-\mathrm{C} 7$	$1.5098(18)$	$\mathrm{C} 11-\mathrm{H} 112$	0.960
$\mathrm{C} 3-\mathrm{H} 31$	0.971	$\mathrm{C} 11-\mathrm{H} 113$	0.984
$\mathrm{O} 4-\mathrm{C} 5$	$1.3553(15)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$100.95(9)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 4$	$128.09(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 10$	$112.80(9)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 6$	$121.36(12)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{O} 10$	$107.55(10)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 6$	$110.46(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$114.56(10)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{O} 8$	107.3
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 11$	$113.52(10)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 71$	109.2
$\mathrm{O} 10-\mathrm{C} 1-\mathrm{C} 11$	$107.29(9)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{H} 71$	107.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$104.94(10)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 72$	112.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9$	$115.82(10)$	$\mathrm{O} 8-\mathrm{C} 7-\mathrm{H} 72$	109.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 9$	$114.94(10)$	$\mathrm{H} 71-\mathrm{C} 7-\mathrm{H} 72$	108.4
C1-C2-H21	109.5	$\mathrm{C} 7-\mathrm{O}-\mathrm{H} 8$	

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$	103.8
$\mathrm{O} 9-\mathrm{C} 2-\mathrm{H} 21$	107.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$103.36(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$117.44(10)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 7$	$109.87(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 31$	107.5
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{H} 31$	110.0
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{H} 31$	108.5
$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5$	$112.01(10)$

$\mathrm{C} 2-\mathrm{O} 9-\mathrm{H} 9$	108.6
$\mathrm{C} 1-\mathrm{O} 10-\mathrm{H} 10$	110.7
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 111$	107.8
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 112$	111.7
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 112$	110.7
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 113$	106.9
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 113$	108.5
$\mathrm{H} 112-\mathrm{C} 11-\mathrm{H} 113$	110.9

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O10—H10 $\cdots \mathrm{O} 8$	0.81	1.90	$2.6770(13)$	159
O8—H8 $\cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.82	$2.6906(14)$	172
O9—H9 $\cdots \mathrm{O}^{\mathrm{ii}}$	0.86	1.93	$2.7547(13)$	160

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, y,-z+1$.

[^0]: (C) 2006 International Union of Crystallography

