Download citation
Download citation
link to html
Two different forms of the title compound, C12H18N4OS2+·2Cl·H2O, have already been reported [Kraut & Reed (1962). Acta Cryst. 15, 747–757; Suh et al. (1982). J. Korean Phys. Soc. 15, 114–121]. In this third form, in which the H atoms were located, a different conformation is observed. The planes of the pyrimidine and thia­zolium rings are at a dihedral angle of 79 (15)°. The structure contains two weak O—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041619/at6061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041619/at6061Isup2.hkl
Contains datablock I

CCDC reference: 296512

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.033
  • wR factor = 0.081
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT222_ALERT_3_A Large Non-Solvent H Ueq(max)/Ueq(min) ... 5.50 Ratio
Author Response: This may be due to the presence of two Chlorine atoms in the anion Part of the structure.
PLAT772_ALERT_2_A Suspect O-H Bond in CIF:      O2     -H1O1    ..       1.95 Ang.
Author Response: This hydrogen bond is caught up using SHELXL program. The unusual hydrogen bonding is novel and found to be very weak.

Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 Cl
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Thiamine, as its pyrophosphate ester, is a coenzyme in a number of important metabolic processes such as the decarboxylation of α-keto acids and the transfer of aldehyde or acyl groups (Krampitz, 1969). In the present work, the H atoms being located by difference map leads to the better understanding of the hydrogen-bonding pattern in vitamin B1. The molecular diagram of the title compound, (I), is given in Fig. 1. Bond angles within the pyrimidine ring are all close to 120°. The small difference between the angle of 120.93 (12)° at N4 and 118.76 (12)° at N3 is some what surprising in view of the fact that N4 is externally bonded to an H atom whereas N3 is not. It has already been pointed out that one would expect the angle at the ring N atom in pyrimidines to approach 125° for the externally bonded case or 106° for the non-bonded case (Pauling & Corey, 1956).

The bond lengths and bond angles in this structure are similar to those of the two different forms reported previously [forms I (Kraut & Reed, 1962) and II (Suh et al., 1982) {please check assignment of references}]. Both of the aromatic rings in this molecule are virtually planar with small deviations from strict planarity. The conformation of the thiamine molecule is described by two torsion angles, ϕT and ϕP, centering the methylene atom C7 to the respective rings ϕT [C2—N1—C7—C8] and ϕP [N1—C7—C8—C9] (Pletcher & Sax, 1972). Basically three kinds of conformers have been observed in the thiamine molecule, namely F, S and V conformations. The value of ϕT and ϕP decides the conformation whether belongs to F, S and V conformation. The torsion angle of ϕT is 0° for F, ±100° for S and ±90° for V (Shin et al., 1977). The value of ϕP is ±90° for F, ±150° for S and ±90° for V (Shin et al., 1977). Among them, the F conformation has been most frequently found in thiamine derivatives. The present structure in which the torsion angle of ϕT = 179.18 (11)°, and ϕP = −79.27 (15)° also belongs to the F conformation. Thus the F conformation is the predominant one of the free thiamine molecules.

The C5-hydroxyethyl side chain is folded back towards the thiazolium ring from the opposite side to the pyrimidine moiety. The thiazolium ring is described by the two torsion angles ϕ5a [S1—C1—C4—C5] and ϕ5 b [C1—C4—C5—O1]. In the present work, the values of ϕ5a and ϕ5 b are 24.2 (20) and −63.35 (18)°, respectively. However, these angles differ widely from those of the two forms reported earlier. We have calculated these angles ϕ5a and ϕ5 b as 103.4 (6) and 53.76 (7)°, respectively, for form I, and −100.8 (3) and 50.6 (8)°, respectively, for form II. The values of ϕ5a and ϕ5 b for most of the thiamine derivatives have been observed to lie in the range ±60 to ±90° (Shin et al., 1977) and within 10° from ±60° (Shin et al., 1977). The essential difference occurs in the angle ϕ5a of the present structure. This difference appears due to the packing specificity required for the hydroxy group participating in hydrogen bonding. The geometries of the hydrogen bonds are given in Table 2. This structure contains two weak but distinct O—H···Cl and N—H···Cl hydrogen bonds. The interatomic distances H1O2···Cl2 and H2O2···Cl1 are 2.40 (3) and 2.32 (3) Å, respectively, which are shorter than the normal van der Waals distance (3.0) Å. These hydrogen bonds must be weaker than N—H···Cl bonds, for which the hydrogen to chloride distances are 2.359 (19), 2.36 (2) and 2.28 (2) Å in this structure. The hydrogen-bond distribution at the alcohol group is well established in this structure. The interatomic distances O2—Cl1 and O2—Cl2 are 3.163 (13) and 3.212 (14) Å, which is in the range of normal van der Waals distance (3.2 Å).

Experimental top

Thiamine hydrochloride (660 mg, Sigma) was dissolved in 75 ml of water. The mixture was heated for about 4 h and allowed to cooling. After a week, colorless block-shaped crystals appeared.

Refinement top

All H atoms were found in a difference Fourier map and refined isotropically [C—H = 0.89 (3)–1.003 (19) Å]. O2···H101 [1.95 (2) Å] hydrogen bond is caught up using SHELXL program. The unusual hydrogen bonding is novel and found to be very weak.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Pritzkow, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I), with 50% probability displacement ellipsoids.
Thiamine dichloride monohydrate top
Crystal data top
C12H18N4OS2+·2Cl·H2OF(000) = 744
Mr = 355.28Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2y bcCell parameters from 25 reflections
a = 9.1437 (2) Åθ = 2–30.8°
b = 7.3438 (2) ŵ = 0.53 mm1
c = 24.7447 (6) ÅT = 173 K
β = 92.112 (1)°Block, colorless
V = 1660.47 (7) Å30.5 × 0.32 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3913 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1998)
θmax = 30.8°, θmin = 1.7°
Tmin = 0.817, Tmax = 0.881h = 1211
11933 measured reflectionsk = 1010
4716 independent reflectionsl = 3529
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.5004P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.27 e Å3
4716 reflectionsΔρmin = 0.27 e Å3
270 parameters
Crystal data top
C12H18N4OS2+·2Cl·H2OV = 1660.47 (7) Å3
Mr = 355.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1437 (2) ŵ = 0.53 mm1
b = 7.3438 (2) ÅT = 173 K
c = 24.7447 (6) Å0.5 × 0.32 × 0.24 mm
β = 92.112 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4716 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1998)
3913 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.881Rint = 0.026
11933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081All H-atom parameters refined
S = 1.05Δρmax = 0.27 e Å3
4716 reflectionsΔρmin = 0.27 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73143 (4)0.61805 (5)0.093135 (14)0.02631 (8)
Cl20.13005 (4)0.87135 (5)0.087101 (15)0.02970 (9)
S10.60833 (4)0.53995 (5)0.197213 (15)0.03026 (10)
O10.75506 (13)0.42930 (16)0.29537 (4)0.0330 (2)
H1O10.796 (2)0.332 (3)0.3025 (9)0.055 (7)*
O20.91842 (15)0.13742 (17)0.33306 (5)0.0350 (3)
H1O20.978 (3)0.186 (3)0.3542 (9)0.056 (7)*
H2O20.873 (3)0.066 (3)0.3532 (10)0.064 (7)*
N10.55130 (12)0.82985 (15)0.14875 (4)0.0196 (2)
N20.58901 (13)0.75687 (18)0.01444 (5)0.0257 (2)
H1N20.6531 (19)0.791 (2)0.0383 (7)0.029 (4)*
H2N20.618 (2)0.706 (3)0.0133 (8)0.037 (5)*
N30.35590 (12)0.71385 (16)0.01825 (5)0.0237 (2)
N40.15847 (13)0.81725 (17)0.02986 (5)0.0263 (2)
H1N40.067 (2)0.825 (3)0.0347 (8)0.043 (5)*
C10.68837 (15)0.73632 (18)0.22234 (5)0.0230 (3)
C20.64574 (15)0.88011 (18)0.19145 (5)0.0217 (3)
C30.52270 (16)0.65450 (19)0.14677 (6)0.0258 (3)
H30.4614 (19)0.603 (2)0.1201 (7)0.030 (4)*
C40.78891 (19)0.7385 (2)0.27160 (7)0.0337 (3)
H4A0.733 (2)0.775 (3)0.3017 (8)0.044 (5)*
H4B0.856 (2)0.832 (3)0.2658 (8)0.045 (5)*
C50.86387 (18)0.5601 (3)0.28388 (7)0.0357 (4)
H5A0.937 (2)0.578 (3)0.3136 (8)0.039 (5)*
H5B0.919 (2)0.523 (3)0.2514 (8)0.040 (5)*
C60.6878 (2)1.0741 (2)0.19913 (7)0.0327 (3)
H6A0.737 (2)1.119 (3)0.1689 (9)0.051 (6)*
H6B0.603 (2)1.152 (3)0.2053 (8)0.052 (6)*
H6C0.749 (2)1.089 (3)0.2314 (9)0.052 (6)*
C70.49062 (15)0.96432 (18)0.10890 (6)0.0224 (3)
H7A0.5733 (17)1.025 (2)0.0934 (6)0.020 (4)*
H7B0.4346 (18)1.049 (2)0.1290 (7)0.029 (4)*
C80.39391 (14)0.87760 (17)0.06647 (5)0.0209 (2)
C90.44822 (14)0.78210 (17)0.02089 (5)0.0203 (2)
C100.21472 (15)0.72945 (19)0.01256 (6)0.0249 (3)
C110.24659 (15)0.89251 (19)0.06859 (6)0.0241 (3)
H110.1983 (18)0.956 (2)0.0970 (7)0.025 (4)*
C120.11179 (19)0.6489 (3)0.05357 (8)0.0366 (4)
H12B0.017 (4)0.663 (4)0.0458 (12)0.097 (10)*
H12A0.126 (3)0.529 (4)0.0564 (10)0.078 (8)*
H12C0.116 (3)0.709 (4)0.0897 (13)0.110 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02476 (16)0.02817 (17)0.02614 (16)0.00201 (12)0.00298 (12)0.00412 (13)
Cl20.01952 (15)0.0377 (2)0.03200 (18)0.00201 (13)0.00257 (12)0.00273 (15)
S10.0424 (2)0.01704 (16)0.03040 (19)0.00494 (14)0.01116 (15)0.00375 (13)
O10.0365 (6)0.0313 (6)0.0311 (6)0.0021 (5)0.0024 (4)0.0069 (5)
O20.0421 (7)0.0326 (6)0.0303 (6)0.0064 (5)0.0001 (5)0.0036 (5)
N10.0210 (5)0.0164 (5)0.0216 (5)0.0003 (4)0.0027 (4)0.0004 (4)
N20.0197 (5)0.0321 (6)0.0255 (6)0.0023 (5)0.0029 (5)0.0030 (5)
N30.0222 (5)0.0247 (6)0.0243 (6)0.0001 (4)0.0017 (4)0.0017 (5)
N40.0177 (5)0.0317 (6)0.0295 (6)0.0029 (5)0.0027 (4)0.0073 (5)
C10.0272 (6)0.0206 (6)0.0212 (6)0.0036 (5)0.0019 (5)0.0012 (5)
C20.0257 (6)0.0190 (6)0.0206 (6)0.0014 (5)0.0037 (5)0.0025 (5)
C30.0311 (7)0.0186 (6)0.0271 (7)0.0039 (5)0.0058 (5)0.0012 (5)
C40.0422 (9)0.0320 (8)0.0261 (7)0.0115 (7)0.0082 (6)0.0029 (6)
C50.0304 (8)0.0462 (9)0.0301 (8)0.0042 (7)0.0038 (6)0.0126 (7)
C60.0467 (9)0.0191 (7)0.0322 (8)0.0067 (6)0.0001 (7)0.0041 (6)
C70.0244 (6)0.0177 (6)0.0251 (6)0.0019 (5)0.0022 (5)0.0026 (5)
C80.0216 (6)0.0197 (6)0.0214 (6)0.0028 (5)0.0022 (5)0.0047 (5)
C90.0204 (6)0.0186 (6)0.0221 (6)0.0013 (5)0.0030 (5)0.0049 (5)
C100.0236 (6)0.0244 (7)0.0267 (7)0.0010 (5)0.0004 (5)0.0063 (5)
C110.0238 (6)0.0245 (6)0.0242 (6)0.0039 (5)0.0052 (5)0.0054 (5)
C120.0290 (8)0.0403 (9)0.0400 (9)0.0058 (7)0.0073 (7)0.0006 (8)
Geometric parameters (Å, º) top
S1—C31.6753 (15)C2—C61.4863 (19)
S1—C11.7229 (14)C3—H30.931 (18)
O1—C51.419 (2)C4—C51.504 (2)
O1—H1O10.83 (2)C4—H4A0.95 (2)
O2—H1O11.95 (2)C4—H4B0.93 (2)
O2—H1O20.82 (2)C5—H5A0.984 (19)
O2—H2O20.84 (3)C5—H5B1.003 (19)
N1—C31.3146 (17)C6—H6A0.94 (2)
N1—C21.3897 (17)C6—H6B0.98 (2)
N1—C71.4883 (17)C6—H6C0.96 (2)
N2—C91.3161 (17)C7—C81.4904 (19)
N2—H1N20.854 (19)C7—H7A0.971 (16)
N2—H2N20.83 (2)C7—H7B0.958 (17)
N3—C101.3087 (17)C8—C111.3544 (18)
N3—C91.3570 (17)C8—C91.4325 (18)
N4—C111.3477 (19)C10—C121.481 (2)
N4—C101.3497 (19)C11—H110.963 (17)
N4—H1N40.85 (2)C12—H12B0.90 (3)
C1—C21.3526 (19)C12—H12A0.89 (3)
C1—C41.499 (2)C12—H12C1.00 (3)
C3—S1—C191.68 (7)O1—C5—H5B110.5 (11)
C5—O1—H1O1108.2 (16)C4—C5—H5B108.4 (11)
H1O1—O2—H1O2106.8 (18)H5A—C5—H5B106.9 (15)
H1O1—O2—H2O2113.6 (17)C2—C6—H6A111.0 (13)
H1O2—O2—H2O2103 (2)C2—C6—H6B112.0 (12)
C3—N1—C2113.93 (11)H6A—C6—H6B108.8 (18)
C3—N1—C7123.82 (12)C2—C6—H6C110.7 (13)
C2—N1—C7122.25 (11)H6A—C6—H6C110.0 (18)
C9—N2—H1N2121.6 (12)H6B—C6—H6C104.1 (17)
C9—N2—H2N2120.3 (13)N1—C7—C8112.35 (11)
H1N2—N2—H2N2118.0 (17)N1—C7—H7A107.0 (9)
C10—N3—C9118.76 (12)C8—C7—H7A111.7 (9)
C11—N4—C10120.93 (12)N1—C7—H7B106.3 (10)
C11—N4—H1N4116.0 (13)C8—C7—H7B109.2 (10)
C10—N4—H1N4123.0 (13)H7A—C7—H7B110.1 (14)
C2—C1—C4127.34 (13)C11—C8—C9116.36 (13)
C2—C1—S1109.86 (10)C11—C8—C7120.23 (12)
C4—C1—S1122.80 (11)C9—C8—C7123.36 (12)
C1—C2—N1112.36 (11)N2—C9—N3116.55 (12)
C1—C2—C6127.47 (13)N2—C9—C8122.23 (13)
N1—C2—C6120.17 (13)N3—C9—C8121.21 (12)
N1—C3—S1112.17 (11)N3—C10—N4122.08 (13)
N1—C3—H3122.6 (11)N3—C10—C12119.72 (14)
S1—C3—H3125.2 (11)N4—C10—C12118.21 (13)
C1—C4—C5114.60 (14)N4—C11—C8120.59 (13)
C1—C4—H4A107.9 (12)N4—C11—H11116.0 (10)
C5—C4—H4A109.7 (12)C8—C11—H11123.4 (10)
C1—C4—H4B105.5 (13)C10—C12—H12B113.7 (19)
C5—C4—H4B112.1 (13)C10—C12—H12A110.9 (17)
H4A—C4—H4B106.7 (17)H12B—C12—H12A106 (2)
O1—C5—C4108.20 (13)C10—C12—H12C113.1 (18)
O1—C5—H5A113.6 (11)H12B—C12—H12C102 (2)
C4—C5—H5A109.1 (11)H12A—C12—H12C111 (2)
C3—S1—C1—C20.35 (11)C2—N1—C7—C8179.18 (11)
C3—S1—C1—C4179.97 (13)N1—C7—C8—C11103.29 (14)
C4—C1—C2—N1179.84 (13)N1—C7—C8—C979.27 (15)
S1—C1—C2—N10.18 (15)C10—N3—C9—N2177.41 (13)
C4—C1—C2—C60.3 (2)C10—N3—C9—C83.04 (19)
S1—C1—C2—C6179.37 (13)C11—C8—C9—N2179.32 (13)
C3—N1—C2—C10.15 (17)C7—C8—C9—N23.1 (2)
C7—N1—C2—C1179.47 (12)C11—C8—C9—N31.15 (18)
C3—N1—C2—C6179.74 (14)C7—C8—C9—N3176.39 (12)
C7—N1—C2—C60.95 (19)C9—N3—C10—N42.6 (2)
C2—N1—C3—S10.42 (16)C9—N3—C10—C12177.33 (13)
C7—N1—C3—S1179.73 (10)C11—N4—C10—N30.3 (2)
C1—S1—C3—N10.44 (12)C11—N4—C10—C12179.67 (14)
C2—C1—C4—C5156.16 (15)C10—N4—C11—C81.7 (2)
S1—C1—C4—C524.2 (2)C9—C8—C11—N41.19 (19)
C1—C4—C5—O163.35 (18)C7—C8—C11—N4178.81 (12)
C3—N1—C7—C80.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···Cl2i0.82 (2)2.40 (3)3.2120 (14)171 (2)
O2—H2O2···Cl1ii0.84 (3)2.32 (3)3.1636 (13)175 (2)
N2—H1N2···Cl2iii0.854 (19)2.359 (19)3.1934 (14)165.9 (15)
O1—H1O1···O20.83 (2)1.95 (2)2.7555 (17)166 (2)
N2—H2N2···Cl10.83 (2)2.36 (2)3.1744 (13)167.8 (18)
N4—H1N4···Cl20.85 (2)2.28 (2)3.0659 (12)152.7 (17)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H18N4OS2+·2Cl·H2O
Mr355.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.1437 (2), 7.3438 (2), 24.7447 (6)
β (°) 92.112 (1)
V3)1660.47 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.5 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1998)
Tmin, Tmax0.817, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
11933, 4716, 3913
Rint0.026
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.05
No. of reflections4716
No. of parameters270
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Pritzkow, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
S1—C31.6753 (15)N2—C91.3161 (17)
S1—C11.7229 (14)N3—C101.3087 (17)
O1—C51.419 (2)N3—C91.3570 (17)
N1—C31.3146 (17)N4—C111.3477 (19)
N1—C21.3897 (17)N4—C101.3497 (19)
N1—C71.4883 (17)
C3—S1—C191.68 (7)N1—C3—S1112.17 (11)
C3—N1—C2113.93 (11)O1—C5—C4108.20 (13)
C3—N1—C7123.82 (12)N1—C7—C8112.35 (11)
C2—N1—C7122.25 (11)N2—C9—N3116.55 (12)
C10—N3—C9118.76 (12)N2—C9—C8122.23 (13)
C11—N4—C10120.93 (12)N3—C9—C8121.21 (12)
C2—C1—S1109.86 (10)N3—C10—N4122.08 (13)
C4—C1—S1122.80 (11)N3—C10—C12119.72 (14)
C1—C2—N1112.36 (11)N4—C10—C12118.21 (13)
N1—C2—C6120.17 (13)N4—C11—C8120.59 (13)
C1—C4—C5—O163.35 (18)N1—C7—C8—C979.27 (15)
N1—C7—C8—C11103.29 (14)C7—C8—C9—N23.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···Cl2i0.82 (2)2.40 (3)3.2120 (14)171 (2)
O2—H2O2···Cl1ii0.84 (3)2.32 (3)3.1636 (13)175 (2)
N2—H1N2···Cl2iii0.854 (19)2.359 (19)3.1934 (14)165.9 (15)
O1—H1O1···O20.83 (2)1.95 (2)2.7555 (17)166 (2)
N2—H2N2···Cl10.83 (2)2.36 (2)3.1744 (13)167.8 (18)
N4—H1N4···Cl20.85 (2)2.28 (2)3.0659 (12)152.7 (17)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds