Download citation
Download citation
link to html
The coordination geometry about the Sn atom in the title compound, [Sn(C6H11)3(C8H6NO5)], is best described as highly distorted tetra­hedral. There is an inter­molecular inter­action, 2.769 (2) Å, between the Sn atom and the carbonyl O atom of the carboxyl­ate group of an adjacent mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039541/bh6052sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039541/bh6052Isup2.hkl
Contains datablock I

CCDC reference: 296714

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.076
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Tricyclohexyltin carboxylates, (C6H11)3Sn(O2CR), generally have a tetrahedral structure and do not auto-associate into chain structures via carboxylate bridging, due to the effects of the three bulky organic groups at Sn (Chandrasekhar et al., 2002; Tiekink, 1991, 1994). 4-Nitrophenoxyacetic acid, whose crystal structure has been reported previously (Kumar & Rao, 1980), is a pesticide intermediate used in the synthesis of fungicides and plant-growth regulators (Xue & Zou, 1999). We present here the crystal structure analysis of its tricyclohexyltin ester, (I).

In (I), the Sn atom is best described as having a highly distorted tetrahedral geometry, with the range of angles subtended at Sn being 89.83 (9)–124.93 (11)° (Fig. 1, Table 1). An Sn1···O2i intermolecular contact of 2.769 (2) Å [symmetry code: (i) −x + 2, y + 1/2, −z + 1/2] is not considered to be a significant bonding interaction (Willem et al., 1998). If the Sn1···O2i interaction were considered as a significant bonding interaction, then (I) would be described as a five-coordinate complex with the Sn atom having a trans-R3SnO2 trigonal–bipyramidal geometry. In that case, atoms C9, C15 and C21 would define the trigonal plane and a one-dimensional polymer would be formed through the apical positions occupied by O1 and O2 (Fig. 2). However, in this description, the Sn atom would lie 0.238 (2) Å out of the trigonal plane.

Atom O2i exerts a steric influence on atom Sn1 from the opposite of atom O1, and thus contributes to the distortion of the tetrahedral geometry around the Sn atom, by opening up the C—Sn1—C angles and contracting the O1—Sn1—C angles. The Sn1···O2 separation of 3.523 (3) Å, and the Sn1—O1 distance of 2.1317 (19) Å, are longer than those found in previously reported tricyclohexyltin carboxylates, such as tricyclohexyltin indole-3-acetate (Molloy et al., 1986), trifluoroacetate (Calogero et al., 1980), N-phthaloylglycinate (Ng & Kumar Das, 1997a), (N,N-diethylthiocarbamoylthio)acetate (Ng & Kumar Das, 1997b), 2-[2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (Willem et al., 1998), 2-(4-chlorophenyl)-3-methylbutyrate (Song et al., 2003) and 4-biphenylacetate (Tian et al., 2005). However, the three Sn—C distances in (I) are similar to those of the carboxylate structures mentioned above (Table 1).

Experimental top

Tricyclohexyltin hydroxide (0.577 g, 1.5 mmol) and 4-nitrophenoxyacetic acid (0.30 g, 1.5 mmol) in toluene (60 ml) were refluxed for 4 h with azeotropic removal of water via a Dean–Stark trap. The resulting clear solution was rotary evaporated under vacuum. The pale-yellow solid obtained, (I), was recrystallized from ethanol and crystals of (I) were obtained from hexane–chloroform (1:1) by slow evaporation at 298 K (yield 70.3%; m.p. 358–359 K). Analysis, found: C 55.22, H 6.69, N 2.37%; calculated for C26H39NO5Sn: C 55.34, H 6.97, N 2.48%.

Refinement top

H atoms were placed in calculated positions and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier C). Constrained C—H distances were 0.93 for aromatic CH, 0.97 for methylene CH2 and 0.98 Å for methine CH.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis.
Tricyclohexyl(4-nitrophenoxyacetato)tin(IV) top
Crystal data top
[Sn(C6H11)3(C8H6NO5)]F(000) = 1168
Mr = 564.27Dx = 1.435 Mg m3
Monoclinic, P21/cMelting point = 358–359 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8892 (15) ÅCell parameters from 5699 reflections
b = 11.7837 (16) Åθ = 2.5–27.6°
c = 20.768 (3) ŵ = 1.01 mm1
β = 101.456 (2)°T = 295 K
V = 2611.8 (6) Å3Prism, pale-yellow
Z = 40.22 × 0.09 × 0.09 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
5390 independent reflections
Radiation source: fine-focus sealed tube4395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.808, Tmax = 0.914k = 1414
20503 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.037P)2 + 0.0495P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Sn(C6H11)3(C8H6NO5)]V = 2611.8 (6) Å3
Mr = 564.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8892 (15) ŵ = 1.01 mm1
b = 11.7837 (16) ÅT = 295 K
c = 20.768 (3) Å0.22 × 0.09 × 0.09 mm
β = 101.456 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
5390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4395 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.914Rint = 0.040
20503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
5390 reflectionsΔρmin = 0.41 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.951222 (15)0.883451 (15)0.225197 (8)0.03471 (8)
N10.2815 (3)0.5962 (2)0.05501 (19)0.0701 (9)
O10.89188 (18)0.74291 (15)0.16204 (10)0.0483 (5)
O20.9826 (2)0.58741 (17)0.21113 (10)0.0525 (5)
O30.7902 (2)0.63325 (18)0.05222 (10)0.0571 (6)
O40.2495 (3)0.5532 (3)0.10184 (17)0.0992 (10)
O50.2095 (3)0.6298 (2)0.00551 (17)0.0986 (10)
C10.9230 (3)0.6386 (2)0.16429 (14)0.0395 (6)
C20.8826 (3)0.5762 (3)0.09964 (14)0.0519 (8)
H2A0.95590.56330.08070.062*
H2B0.84980.50250.10860.062*
C30.6687 (3)0.6261 (2)0.05845 (14)0.0470 (7)
C40.5810 (3)0.6657 (3)0.00457 (15)0.0585 (9)
H40.60820.69780.03100.070*
C50.4557 (3)0.6573 (3)0.00405 (17)0.0599 (9)
H5A0.39760.68400.03170.072*
C60.4160 (3)0.6097 (2)0.05625 (17)0.0538 (8)
C70.5007 (3)0.5729 (3)0.11058 (16)0.0556 (8)
H70.47240.54210.14620.067*
C80.6273 (3)0.5818 (3)0.11194 (14)0.0494 (7)
H80.68480.55810.14880.059*
C90.8754 (2)0.8342 (2)0.30918 (13)0.0399 (6)
H90.84500.90350.32690.048*
C100.7627 (3)0.7557 (3)0.28923 (17)0.0599 (9)
H10A0.70160.79170.25490.072*
H10B0.78950.68570.27160.072*
C110.7021 (3)0.7286 (3)0.34714 (19)0.0730 (11)
H11A0.63410.67520.33350.088*
H11B0.66710.79740.36180.088*
C120.7966 (3)0.6782 (3)0.40366 (17)0.0656 (10)
H12A0.75690.66740.44110.079*
H12B0.82300.60450.39080.079*
C130.9098 (3)0.7532 (3)0.42346 (15)0.0608 (9)
H13A0.97060.71550.45720.073*
H13B0.88530.82340.44180.073*
C140.9697 (3)0.7799 (3)0.36470 (14)0.0457 (7)
H14A1.03990.83100.37830.055*
H14B1.00150.71040.34900.055*
C151.1474 (3)0.8819 (2)0.22108 (15)0.0435 (7)
H151.17350.96170.22300.052*
C161.1720 (3)0.8362 (3)0.15582 (16)0.0597 (9)
H16A1.14710.75710.15110.072*
H16B1.12190.87830.11980.072*
C171.3102 (3)0.8470 (3)0.15274 (19)0.0684 (10)
H17A1.32400.81360.11210.082*
H17B1.33230.92670.15250.082*
C181.3922 (3)0.7906 (4)0.20863 (19)0.0757 (11)
H18A1.47910.80360.20610.091*
H18B1.37710.70940.20610.091*
C191.3688 (3)0.8347 (4)0.27340 (19)0.0840 (12)
H19A1.39430.91360.27840.101*
H19B1.41930.79200.30900.101*
C201.2314 (3)0.8249 (3)0.27766 (16)0.0608 (9)
H20A1.20890.74530.27830.073*
H20B1.21890.85890.31840.073*
C210.8370 (2)0.9942 (2)0.15620 (12)0.0369 (6)
H210.85441.07200.17220.044*
C220.6970 (3)0.9733 (3)0.15166 (15)0.0532 (8)
H22A0.67780.89490.13940.064*
H22B0.67610.98590.19440.064*
C230.6175 (3)1.0515 (3)0.10124 (16)0.0617 (9)
H23A0.52971.03250.09750.074*
H23B0.62921.12950.11620.074*
C240.6527 (3)1.0407 (3)0.03479 (15)0.0599 (9)
H24A0.63370.96450.01810.072*
H24B0.60311.09340.00440.072*
C250.7895 (3)1.0647 (3)0.03856 (15)0.0576 (8)
H25A0.80691.14330.05110.069*
H25B0.81001.05350.00440.069*
C260.8703 (3)0.9875 (2)0.08817 (13)0.0471 (7)
H26A0.95761.00820.09160.056*
H26B0.86020.90980.07250.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02916 (11)0.03885 (12)0.03603 (12)0.00299 (8)0.00626 (8)0.00653 (8)
N10.063 (2)0.0443 (17)0.095 (3)0.0010 (14)0.0023 (19)0.0102 (16)
O10.0547 (13)0.0347 (11)0.0534 (13)0.0010 (9)0.0057 (10)0.0028 (9)
O20.0559 (13)0.0508 (12)0.0487 (13)0.0055 (10)0.0049 (10)0.0068 (10)
O30.0655 (15)0.0666 (15)0.0387 (12)0.0008 (11)0.0092 (11)0.0010 (10)
O40.0727 (19)0.096 (2)0.129 (3)0.0126 (17)0.0192 (19)0.021 (2)
O50.0691 (18)0.091 (2)0.118 (3)0.0074 (15)0.0260 (18)0.0011 (17)
C10.0360 (15)0.0408 (17)0.0440 (16)0.0038 (12)0.0132 (13)0.0000 (13)
C20.060 (2)0.0463 (17)0.0498 (19)0.0051 (15)0.0118 (15)0.0067 (15)
C30.062 (2)0.0372 (16)0.0406 (16)0.0015 (14)0.0071 (15)0.0070 (13)
C40.079 (3)0.0522 (19)0.0411 (18)0.0051 (18)0.0046 (17)0.0088 (15)
C50.068 (2)0.0491 (18)0.054 (2)0.0077 (17)0.0088 (17)0.0004 (16)
C60.057 (2)0.0380 (17)0.061 (2)0.0030 (14)0.0009 (16)0.0098 (15)
C70.066 (2)0.0508 (18)0.0496 (19)0.0001 (16)0.0095 (16)0.0028 (15)
C80.054 (2)0.0527 (18)0.0388 (17)0.0038 (15)0.0026 (14)0.0028 (14)
C90.0374 (15)0.0416 (15)0.0438 (16)0.0071 (12)0.0158 (13)0.0069 (13)
C100.0384 (17)0.077 (2)0.064 (2)0.0040 (16)0.0102 (15)0.0218 (18)
C110.0446 (19)0.091 (3)0.090 (3)0.0035 (19)0.0309 (19)0.033 (2)
C120.063 (2)0.070 (2)0.075 (2)0.0108 (18)0.0376 (19)0.0292 (19)
C130.070 (2)0.069 (2)0.0462 (19)0.0116 (18)0.0191 (17)0.0152 (16)
C140.0410 (16)0.0525 (17)0.0438 (17)0.0021 (13)0.0090 (13)0.0037 (13)
C150.0324 (15)0.0426 (16)0.0574 (18)0.0012 (12)0.0137 (13)0.0031 (13)
C160.0490 (19)0.079 (2)0.055 (2)0.0127 (17)0.0189 (16)0.0057 (18)
C170.058 (2)0.079 (2)0.077 (3)0.0061 (19)0.035 (2)0.000 (2)
C180.0378 (19)0.099 (3)0.090 (3)0.0100 (19)0.0136 (18)0.018 (2)
C190.0388 (19)0.136 (4)0.074 (3)0.010 (2)0.0028 (18)0.019 (3)
C200.0388 (17)0.087 (2)0.055 (2)0.0065 (17)0.0059 (15)0.0005 (18)
C210.0365 (14)0.0319 (13)0.0380 (15)0.0003 (11)0.0032 (12)0.0004 (11)
C220.0390 (17)0.062 (2)0.057 (2)0.0047 (14)0.0054 (14)0.0055 (16)
C230.0381 (17)0.072 (2)0.069 (2)0.0141 (16)0.0046 (16)0.0063 (18)
C240.054 (2)0.060 (2)0.055 (2)0.0025 (16)0.0144 (16)0.0074 (16)
C250.063 (2)0.059 (2)0.0434 (18)0.0018 (17)0.0071 (15)0.0124 (15)
C260.0432 (17)0.0530 (18)0.0429 (17)0.0008 (14)0.0036 (13)0.0109 (14)
Geometric parameters (Å, º) top
Sn1—O12.1317 (19)C13—H13A0.9700
Sn1—C212.144 (2)C13—H13B0.9700
Sn1—C92.152 (3)C14—H14A0.9700
Sn1—C152.155 (3)C14—H14B0.9700
Sn1—O2i2.769 (2)C15—C201.497 (4)
N1—O41.208 (4)C15—C161.531 (4)
N1—O51.228 (4)C15—H150.9800
N1—C61.469 (5)C16—C171.524 (4)
O1—C11.274 (3)C16—H16A0.9700
O2—C11.217 (3)C16—H16B0.9700
O3—C31.358 (4)C17—C181.475 (5)
O3—C21.428 (3)C17—H17A0.9700
C1—C21.518 (4)C17—H17B0.9700
C2—H2A0.9700C18—C191.510 (5)
C2—H2B0.9700C18—H18A0.9700
C3—C81.381 (4)C18—H18B0.9700
C3—C41.399 (4)C19—C201.521 (4)
C4—C51.367 (5)C19—H19A0.9700
C4—H40.9300C19—H19B0.9700
C5—C61.365 (5)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.378 (4)C21—C221.528 (4)
C7—C81.378 (4)C21—C261.529 (4)
C7—H70.9300C21—H210.9800
C8—H80.9300C22—C231.528 (4)
C9—C141.524 (4)C22—H22A0.9700
C9—C101.527 (4)C22—H22B0.9700
C9—H90.9800C23—C241.509 (4)
C10—C111.517 (4)C23—H23A0.9700
C10—H10A0.9700C23—H23B0.9700
C10—H10B0.9700C24—C251.503 (4)
C11—C121.520 (4)C24—H24A0.9700
C11—H11A0.9700C24—H24B0.9700
C11—H11B0.9700C25—C261.518 (4)
C12—C131.506 (5)C25—H25A0.9700
C12—H12A0.9700C25—H25B0.9700
C12—H12B0.9700C26—H26A0.9700
C13—C141.527 (4)C26—H26B0.9700
O1—Sn1—C2189.83 (9)C9—C14—H14B109.4
O1—Sn1—C999.86 (9)C13—C14—H14B109.4
C21—Sn1—C9116.16 (10)H14A—C14—H14B108.0
O1—Sn1—C1598.68 (9)C20—C15—C16110.5 (2)
C21—Sn1—C15115.26 (11)C20—C15—Sn1115.4 (2)
C9—Sn1—C15124.93 (11)C16—C15—Sn1112.8 (2)
O1—Sn1—O2i170.61 (11)C20—C15—H15105.8
C21—Sn1—O2i81.49 (9)C16—C15—H15105.8
C9—Sn1—O2i87.27 (9)Sn1—C15—H15105.8
C15—Sn1—O2i81.95 (9)C17—C16—C15110.8 (3)
O4—N1—O5124.9 (4)C17—C16—H16A109.5
O4—N1—C6118.5 (3)C15—C16—H16A109.5
O5—N1—C6116.6 (4)C17—C16—H16B109.5
C1—O1—Sn1132.96 (19)C15—C16—H16B109.5
C3—O3—C2118.1 (2)H16A—C16—H16B108.1
O2—C1—O1127.1 (3)C18—C17—C16112.2 (3)
O2—C1—C2118.8 (3)C18—C17—H17A109.2
O1—C1—C2114.0 (3)C16—C17—H17A109.2
O3—C2—C1115.0 (2)C18—C17—H17B109.2
O3—C2—H2A108.5C16—C17—H17B109.2
C1—C2—H2A108.5H17A—C17—H17B107.9
O3—C2—H2B108.5C17—C18—C19111.3 (3)
C1—C2—H2B108.5C17—C18—H18A109.4
H2A—C2—H2B107.5C19—C18—H18A109.4
O3—C3—C8125.4 (3)C17—C18—H18B109.4
O3—C3—C4115.2 (3)C19—C18—H18B109.4
C8—C3—C4119.3 (3)H18A—C18—H18B108.0
C5—C4—C3120.3 (3)C18—C19—C20111.5 (3)
C5—C4—H4119.9C18—C19—H19A109.3
C3—C4—H4119.9C20—C19—H19A109.3
C6—C5—C4119.8 (3)C18—C19—H19B109.3
C6—C5—H5A120.1C20—C19—H19B109.3
C4—C5—H5A120.1H19A—C19—H19B108.0
C5—C6—C7120.9 (3)C15—C20—C19112.0 (3)
C5—C6—N1120.2 (3)C15—C20—H20A109.2
C7—C6—N1118.9 (3)C19—C20—H20A109.2
C8—C7—C6119.8 (3)C15—C20—H20B109.2
C8—C7—H7120.1C19—C20—H20B109.2
C6—C7—H7120.1H20A—C20—H20B107.9
C7—C8—C3119.8 (3)C22—C21—C26110.6 (2)
C7—C8—H8120.1C22—C21—Sn1112.46 (18)
C3—C8—H8120.1C26—C21—Sn1111.92 (17)
C14—C9—C10109.6 (2)C22—C21—H21107.2
C14—C9—Sn1114.66 (18)C26—C21—H21107.2
C10—C9—Sn1111.11 (19)Sn1—C21—H21107.2
C14—C9—H9107.0C23—C22—C21111.5 (2)
C10—C9—H9107.0C23—C22—H22A109.3
Sn1—C9—H9107.0C21—C22—H22A109.3
C11—C10—C9111.4 (3)C23—C22—H22B109.3
C11—C10—H10A109.3C21—C22—H22B109.3
C9—C10—H10A109.3H22A—C22—H22B108.0
C11—C10—H10B109.3C24—C23—C22111.3 (3)
C9—C10—H10B109.3C24—C23—H23A109.4
H10A—C10—H10B108.0C22—C23—H23A109.4
C10—C11—C12111.1 (3)C24—C23—H23B109.4
C10—C11—H11A109.4C22—C23—H23B109.4
C12—C11—H11A109.4H23A—C23—H23B108.0
C10—C11—H11B109.4C25—C24—C23111.4 (3)
C12—C11—H11B109.4C25—C24—H24A109.3
H11A—C11—H11B108.0C23—C24—H24A109.3
C13—C12—C11112.0 (3)C25—C24—H24B109.3
C13—C12—H12A109.2C23—C24—H24B109.3
C11—C12—H12A109.2H24A—C24—H24B108.0
C13—C12—H12B109.2C24—C25—C26110.9 (3)
C11—C12—H12B109.2C24—C25—H25A109.5
H12A—C12—H12B107.9C26—C25—H25A109.5
C12—C13—C14111.1 (3)C24—C25—H25B109.5
C12—C13—H13A109.4C26—C25—H25B109.5
C14—C13—H13A109.4H25A—C25—H25B108.0
C12—C13—H13B109.4C25—C26—C21112.6 (2)
C14—C13—H13B109.4C25—C26—H26A109.1
H13A—C13—H13B108.0C21—C26—H26A109.1
C9—C14—C13111.1 (2)C25—C26—H26B109.1
C9—C14—H14A109.4C21—C26—H26B109.1
C13—C14—H14A109.4H26A—C26—H26B107.8
C21—Sn1—O1—C1175.0 (3)C10—C11—C12—C1354.4 (4)
C9—Sn1—O1—C168.5 (3)C11—C12—C13—C1454.6 (4)
C15—Sn1—O1—C159.5 (3)C10—C9—C14—C1357.1 (3)
Sn1—O1—C1—O213.8 (4)Sn1—C9—C14—C13177.1 (2)
Sn1—O1—C1—C2164.07 (19)C12—C13—C14—C956.4 (3)
C3—O3—C2—C180.2 (3)O1—Sn1—C15—C2098.5 (2)
O2—C1—C2—O3166.4 (3)C21—Sn1—C15—C20167.5 (2)
O1—C1—C2—O315.6 (4)C9—Sn1—C15—C2010.0 (3)
C2—O3—C3—C89.8 (4)O1—Sn1—C15—C1629.7 (2)
C2—O3—C3—C4168.9 (3)C21—Sn1—C15—C1664.2 (2)
O3—C3—C4—C5176.7 (3)C9—Sn1—C15—C16138.2 (2)
C8—C3—C4—C52.1 (5)C20—C15—C16—C1754.5 (4)
C3—C4—C5—C60.3 (5)Sn1—C15—C16—C17174.8 (2)
C4—C5—C6—C72.0 (5)C15—C16—C17—C1855.7 (4)
C4—C5—C6—N1177.5 (3)C16—C17—C18—C1955.5 (4)
O4—N1—C6—C5179.6 (3)C17—C18—C19—C2054.6 (5)
O5—N1—C6—C50.2 (4)C16—C15—C20—C1954.6 (4)
O4—N1—C6—C70.0 (5)Sn1—C15—C20—C19176.0 (2)
O5—N1—C6—C7179.8 (3)C18—C19—C20—C1554.8 (5)
C5—C6—C7—C81.4 (5)O1—Sn1—C21—C2268.5 (2)
N1—C6—C7—C8178.2 (3)C9—Sn1—C21—C2232.4 (2)
C6—C7—C8—C30.9 (5)C15—Sn1—C21—C22168.00 (19)
O3—C3—C8—C7176.0 (3)O1—Sn1—C21—C2656.69 (18)
C4—C3—C8—C72.7 (4)C9—Sn1—C21—C26157.60 (18)
O1—Sn1—C9—C1499.3 (2)C15—Sn1—C21—C2642.8 (2)
C21—Sn1—C9—C14166.04 (19)C26—C21—C22—C2353.0 (3)
C15—Sn1—C9—C148.7 (3)Sn1—C21—C22—C23178.9 (2)
O1—Sn1—C9—C1025.7 (2)C21—C22—C23—C2455.2 (4)
C21—Sn1—C9—C1069.0 (2)C22—C23—C24—C2556.8 (4)
C15—Sn1—C9—C10133.62 (19)C23—C24—C25—C2656.3 (4)
C14—C9—C10—C1157.1 (3)C24—C25—C26—C2155.1 (3)
Sn1—C9—C10—C11175.2 (2)C22—C21—C26—C2553.3 (3)
C9—C10—C11—C1255.7 (4)Sn1—C21—C26—C25179.5 (2)
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H11)3(C8H6NO5)]
Mr564.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.8892 (15), 11.7837 (16), 20.768 (3)
β (°) 101.456 (2)
V3)2611.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.22 × 0.09 × 0.09
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.808, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
20503, 5390, 4395
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.02
No. of reflections5390
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Sn1—O12.1317 (19)Sn1—O2i2.769 (2)
Sn1—C212.144 (2)O1—C11.274 (3)
Sn1—C92.152 (3)O2—C11.217 (3)
Sn1—C152.155 (3)
O1—Sn1—C2189.83 (9)C9—Sn1—C15124.93 (11)
O1—Sn1—C999.86 (9)O1—Sn1—O2i170.61 (11)
C21—Sn1—C9116.16 (10)C21—Sn1—O2i81.49 (9)
O1—Sn1—C1598.68 (9)C9—Sn1—O2i87.27 (9)
C21—Sn1—C15115.26 (11)C15—Sn1—O2i81.95 (9)
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds