Download citation
Download citation
link to html
Mol­ecules of the title compound, C14H9NOS, exhibit a chiral non-planar structure in which the 4-cyano­phenyl and S-phenyl rings are tilted at dihedral angles of 1.81 (2) and 72.49 (1)° with respect to the central thio­carbonate unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039267/bt6793sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039267/bt6793Isup2.hkl
Contains datablock I

CCDC reference: 296523

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.077
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT150_ALERT_1_C Volume as Calculated Differs from that Given ... 595.80 Ang-3 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C5 - C51 ... 1.45 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H14 .. O1 .. 2.75 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H15 .. O1 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. O1 .. 2.64 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. N5 .. 2.88 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H13 .. N5 .. 2.99 Ang.
Alert level G HYDTR01_ALERT_1_G Extra text has been found in the _refine_ls_hydrogen_treatment fi Explanatory text should be in the _publ_section_refinement field. Hydrogen treatment given as constr. Hydrogen treatment identified as constr REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.05 From the CIF: _reflns_number_total 2068 Count of symmetry unique reflns 1136 Completeness (_total/calc) 182.04% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 932 Fraction of Friedel pairs measured 0.820 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

In previous papers on the vibrational spectra and theoretical analysis of S-phenyl 4-substituted-thiobenzoates, we have assigned and interpreted the characteristic IR bands and predicted their molecular structures using the possibilities of linear-dichroic infrared spectroscopy (Arnaudov et al., 2003; Ivanova & Arnaudov, 2003). With the goal of comparing an experimental structure with the predictions of IR–LD spectroscopic analysis and ab initio calculations, we have now determined the single-crystal X-ray structure of the title compound, (I).

Molecules of (I) are chiral due to the fact that the S-phenyl ring is twisted by 72.49 (1)° out of the plane of thiocarbonate function to minimize the O1···C16 contact. In contrast, the 4-cyanophenyl ring (C2–C7) is almost coplanar with the central thiocarbonate unit and exhibits an interplanar angle of only 1.81 (2)°. Our IR–LD spectral analysis and ab initio calculations predicted interplanar angles of 90.8 (6) and 0.0 (1)°, respectively. The experimental and theoretical metrical parameters obtained for (I) are closely similar.

Compound (I) crystallizes in the chiral monoclinic space group P21 and participates in very weak intermolecular hydrogen bridges (Table 1). The observed structure of (I) is in good agreement with those determined for other S-phenyl thiobenzoates (Allouchi et al., 1995; Chrusciel et al., 1995; Ganesh et al., 2005; Jovanovski et al., 1993; Karczmarcyk or Karczmarzyk et al., 2001; Low et al., 2000; Sakamoto et al., 1996; Takahashi, Sekine et al., 1998; Takahashi, Fujita et al., 1998).

Experimental top

The title compound was purchased as a white powder from Merck. 0.532 g were dissolved in 5 ml of methanol and the solution left (2.22 mmol) to stand to afford white crystals of (I) within 5 days. Elemental analysis for C14H9NOS found: C 70.2, H 2.8, N 5.9%; calculated: C 70.3, H 3.8, N 5.9%; FAB–MS (Fisons VG Autospec) m/z 238.3 (100%).

Refinement top

The H atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Uiso(C). The highest peak in the final difference synthesis is 0.87 Å from atom S1 and the deepest hole is 0.80 Å from this atom.

Computing details top

Data collection: R3m/V User's Guide (Siemens, 1989); cell refinement: R3m/V User's Guide; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% propability level.
[Figure 2] Fig. 2. Projection of the structure of (I) perpendicular to [010].
(S)-Phenyl 4-cyanothiobenzoate top
Crystal data top
C14H9NOSF(000) = 248
Mr = 239.28Dx = 1.334 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 15 reflections
a = 7.499 (5) Åθ = 7.6–15.8°
b = 7.835 (3) ŵ = 0.25 mm1
c = 10.624 (7) ÅT = 294 K
β = 107.37 (8)°Needle, colourless
V = 595.8 (6) Å30.59 × 0.26 × 0.21 mm
Z = 2
Data collection top
Siemens P4 four-circle
diffractometer
1816 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω scansh = 18
Absorption correction: psi-scan
(XPREP in SHELXTL-Plus; Sheldrick, 1995)
k = 99
Tmin = 0.928, Tmax = 0.947l = 1212
2572 measured reflections3 standard reflections every 100 reflections
2068 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.1314P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.18 e Å3
2068 reflectionsΔρmin = 0.23 e Å3
155 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.016 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 942 Friedel Pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C14H9NOSV = 595.8 (6) Å3
Mr = 239.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.499 (5) ŵ = 0.25 mm1
b = 7.835 (3) ÅT = 294 K
c = 10.624 (7) Å0.59 × 0.26 × 0.21 mm
β = 107.37 (8)°
Data collection top
Siemens P4 four-circle
diffractometer
1816 reflections with I > 2σ(I)
Absorption correction: psi-scan
(XPREP in SHELXTL-Plus; Sheldrick, 1995)
Rint = 0.013
Tmin = 0.928, Tmax = 0.9473 standard reflections every 100 reflections
2572 measured reflections intensity decay: none
2068 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.23 e Å3
2068 reflectionsAbsolute structure: Flack (1983), 942 Friedel Pairs
155 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00671 (8)0.46646 (9)0.95738 (6)0.0590 (2)
O10.2488 (3)0.2794 (3)0.79479 (18)0.0690 (6)
C10.0973 (3)0.3421 (3)0.8160 (2)0.0446 (6)
C20.0193 (3)0.3200 (3)0.7239 (2)0.0423 (5)
C30.0560 (4)0.2281 (3)0.6093 (3)0.0555 (7)
H30.17590.18340.59080.067*
C40.0458 (4)0.2023 (4)0.5222 (3)0.0594 (8)
H40.00530.13950.44560.071*
C50.2223 (4)0.2692 (3)0.5485 (2)0.0535 (6)
C510.3299 (5)0.2384 (4)0.4577 (3)0.0745 (9)
N50.4122 (5)0.2126 (5)0.3861 (3)0.1095 (12)
C60.2980 (3)0.3628 (4)0.6617 (3)0.0572 (7)
H60.41700.40930.67910.069*
C70.1959 (3)0.3873 (3)0.7492 (2)0.0503 (6)
H70.24720.44980.82590.060*
C110.1729 (3)0.4720 (4)1.0344 (2)0.0454 (5)
C120.1510 (4)0.3854 (3)1.1498 (2)0.0531 (6)
H120.04430.32021.18580.064*
C130.2875 (4)0.3947 (4)1.2132 (2)0.0583 (7)
H130.27270.33481.29120.070*
C140.4434 (3)0.4912 (4)1.1617 (2)0.0550 (6)
H140.53500.49691.20430.066*
C150.4649 (4)0.5799 (3)1.0466 (3)0.0542 (6)
H150.57080.64661.01200.065*
C160.3310 (3)0.5710 (3)0.9820 (2)0.0514 (6)
H160.34650.63090.90380.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0491 (3)0.0726 (4)0.0633 (4)0.0142 (4)0.0288 (3)0.0210 (4)
O10.0520 (11)0.0935 (16)0.0704 (12)0.0275 (10)0.0318 (10)0.0261 (11)
C10.0416 (13)0.0484 (14)0.0470 (13)0.0020 (11)0.0182 (10)0.0013 (11)
C20.0423 (12)0.0446 (13)0.0413 (12)0.0009 (10)0.0143 (9)0.0018 (10)
C30.0500 (14)0.0653 (17)0.0532 (14)0.0085 (13)0.0186 (12)0.0071 (13)
C40.064 (2)0.0669 (18)0.0497 (17)0.0013 (15)0.0208 (14)0.0085 (13)
C50.0573 (16)0.0627 (16)0.0477 (13)0.0138 (13)0.0267 (13)0.0081 (12)
C510.077 (2)0.090 (2)0.0694 (18)0.0110 (18)0.0426 (17)0.0064 (17)
N50.125 (3)0.135 (3)0.099 (2)0.013 (2)0.080 (2)0.004 (2)
C60.0429 (13)0.0723 (18)0.0600 (15)0.0008 (13)0.0211 (12)0.0038 (14)
C70.0413 (13)0.0662 (15)0.0449 (12)0.0032 (12)0.0149 (10)0.0029 (11)
C110.0428 (12)0.0495 (12)0.0475 (11)0.0009 (14)0.0192 (10)0.0096 (13)
C120.0530 (14)0.0550 (14)0.0511 (14)0.0079 (12)0.0149 (12)0.0019 (12)
C130.0670 (17)0.0646 (16)0.0467 (14)0.0036 (14)0.0224 (13)0.0013 (12)
C140.0541 (13)0.0618 (17)0.0568 (14)0.0034 (14)0.0285 (11)0.0142 (14)
C150.0479 (14)0.0556 (15)0.0612 (16)0.0038 (12)0.0194 (13)0.0080 (12)
C160.0559 (15)0.0516 (15)0.0479 (14)0.0006 (12)0.0176 (12)0.0024 (12)
Geometric parameters (Å, º) top
S1—C11.765 (3)C6—H60.9300
S1—C111.773 (2)C7—H70.9300
O1—C11.195 (3)C11—C121.368 (3)
C1—C21.505 (3)C11—C161.387 (3)
C2—C71.375 (3)C12—C131.385 (3)
C2—C31.382 (3)C12—H120.9300
C3—C41.379 (4)C13—C141.362 (4)
C3—H30.9300C13—H130.9300
C4—C51.373 (4)C14—C151.373 (4)
C4—H40.9300C14—H140.9300
C5—C61.378 (4)C15—C161.377 (3)
C5—C511.450 (4)C15—H150.9300
C51—N51.131 (3)C16—H160.9300
C6—C71.383 (3)
C1—S1—C11101.68 (12)C2—C7—H7119.7
O1—C1—C2122.3 (2)C6—C7—H7119.7
O1—C1—S1122.74 (18)C12—C11—C16119.8 (2)
C2—C1—S1114.95 (17)C12—C11—S1119.82 (19)
C7—C2—C3119.2 (2)C16—C11—S1120.30 (19)
C7—C2—C1122.8 (2)C11—C12—C13120.1 (2)
C3—C2—C1118.0 (2)C11—C12—H12120.0
C4—C3—C2120.4 (2)C13—C12—H12120.0
C4—C3—H3119.8C14—C13—C12120.3 (2)
C2—C3—H3119.8C14—C13—H13119.9
C5—C4—C3120.1 (3)C12—C13—H13119.9
C5—C4—H4120.0C13—C14—C15119.8 (2)
C3—C4—H4120.0C13—C14—H14120.1
C4—C5—C6120.1 (2)C15—C14—H14120.1
C4—C5—C51119.7 (3)C14—C15—C16120.6 (2)
C6—C5—C51120.2 (3)C14—C15—H15119.7
N5—C51—C5179.0 (4)C16—C15—H15119.7
C5—C6—C7119.6 (2)C15—C16—C11119.4 (2)
C5—C6—H6120.2C15—C16—H16120.3
C7—C6—H6120.2C11—C16—H16120.3
C2—C7—C6120.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.753.359 (3)124
C15—H15···O1i0.932.963.472 (4)116
C6—H6···O1ii0.932.643.333 (4)132
C6—H6···N5iii0.932.883.626 (4)138
C13—H13···N5iv0.932.993.599 (4)125
Symmetry codes: (i) x1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1; (iv) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H9NOS
Mr239.28
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)7.499 (5), 7.835 (3), 10.624 (7)
β (°) 107.37 (8)
V3)595.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.59 × 0.26 × 0.21
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Absorption correctionPsi-scan
(XPREP in SHELXTL-Plus; Sheldrick, 1995)
Tmin, Tmax0.928, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
2572, 2068, 1816
Rint0.013
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.02
No. of reflections2068
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 942 Friedel Pairs
Absolute structure parameter0.05 (8)

Computer programs: R3m/V User's Guide (Siemens, 1989), R3m/V User's Guide, XDISK (Siemens, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1995), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.753.359 (3)124
C15—H15···O1i0.932.963.472 (4)116
C6—H6···O1ii0.932.643.333 (4)132
C6—H6···N5iii0.932.883.626 (4)138
C13—H13···N5iv0.932.993.599 (4)125
Symmetry codes: (i) x1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1; (iv) x1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds