Download citation
Download citation
link to html
The asymmetric unit of the title compound, C18H26N2O, contains two mol­ecules. In both mol­ecules, the oxime group has an E configuration and the piperidine ring adopts a chair conformation. Intra­molecular C—H...O and inter­molecular O—H...N hydrogen bonds are observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680504208X/ci6691sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680504208X/ci6691Isup2.hkl
Contains datablock I

CCDC reference: 296529

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.046
  • wR factor = 0.122
  • Data-to-parameter ratio = 5.3

checkCIF/PLATON results

No syntax errors found




Alert level A REFI021_ALERT_1_A _refine_ls_abs_structure_details is missing Absolute structure method and Friedel-pair number. This should be present as the _refine_ls_abs_structure_Flack or Roge field has been filled out. THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5166
Author Response: The data were collected on an a Stoe IPDS II diffractometer with an image plate detector. Because of the long c parameter [53.307(3)] of the unit cell, the reflection spots were rather close to each other and to prevent the overlopping of these reflections we had to increase the crystal to detector distance to 180 mm resulting decreasing in the theta-full.
PLAT023_ALERT_3_A Resolution (too) Low [sin(th)/Lambda < 0.6].....      21.54 Deg.
Author Response: The data were collected on an a Stoe IPDS II diffractometer with an image plate detector. Because of the long c parameter [53.307(3)] of the unit cell, the reflection spots were rather close to each other and to prevent the overlopping of these reflections we had to increase the crystal to detector distance to 180 mm resulting decreasing in the theta-full.
PLAT027_ALERT_3_A _diffrn_reflns_theta_full (too) Low ............      21.54 Deg.
Author Response: The data were collected on an a Stoe IPDS II diffractometer with an image plate detector. Because of the long c parameter [53.307(3)] of the unit cell, the reflection spots were rather close to each other and to prevent the overlopping of these reflections we had to increase the crystal to detector distance to 180 mm resulting decreasing in the theta-full.

Alert level B REFNR01_ALERT_3_B Ratio of reflections to parameters is < 6 for a non-centrosymmetric structure, where ZMAX < 18 sine(theta)/lambda 0.5166 Proportion of unique data used 1.0000 Ratio reflections to parameters 5.3155 STRDE01_ALERT_1_B A value for _refine_ls_abs_structure_flack has been given, without an explanantion in the _refine_ls_abs_structure_details field. PLAT089_ALERT_3_B Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 5.32
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.123 STRVA01_ALERT_4_C Flack test results are meaningless. From the CIF: _refine_ls_abs_structure_Flack 0.000 From the CIF: _refine_ls_abs_structure_Flack_su 10.000 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.12 PLAT032_ALERT_4_C Std. Uncertainty in Flack Parameter too High ... 10.00 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.64 mm PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 8 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 10.00
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 21.54 From the CIF: _reflns_number_total 1988 Count of symmetry unique reflns 1993 Completeness (_total/calc) 99.75% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
4 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 9 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

3-Substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activities (Dehmlow & Schmidt, 1990), and also liquid crystal properties (Coghi et al., 1976). Owing to their unique biological properties, the piperidines have been target molecules in organic synthesis (Weintraub et al., 2003). In recent years, polyhydroxylated piperidine alkaloids have attracted much attention because some of them have the ability to act as selective glycosidase inhibitors (Stutz, 1999). Oximes show geometric isomerism due to the double bond between the N and C atoms (Mixich & Thiele, 1979; Migrdichian, 1957). Because of significant differences in the physical, chemical and biological properties of these geometric isomers, the determination of the configuration of the isomers is important (Mathison et al., 1989). Oximes and oxime ethers also have a broad pharmacological activity spectrum, encompassing antifungal, antibacterial, antidepressant and insecticidal activities, as well as activity as a nerve-gas antidote, depending on the pharmacophoric group of the molecule (Polak, 1982; Balsamo et al., 1990; Holan et al., 1984; Forman, 1964). The oxime group (CN—OH) possesses stronger hydrogen-bonding capabilities than the alcohol, phenol or carboxylic acid group (Marsman et al., 1999). Hydrogen bonding plays a key role in molecular recognition in chemical engineering (Bertolasi et al., 1982; Gilli et al., 1983; Hökelek et al., 2001). As part of our ongoing study of the relationship between the molecular and crystal structures of cyclobutane and oxime derivatives, a crystal-structure determination of the title compound, (I), has been undertaken and the results are presented here.

Previously we have reported the crystal structures of similar compounds, viz. 2-[2-hydroxyimino-2-(3-methyl-3-phenylcyclobutyl)ethyl]isoindole-1,3-dione, (II) (Özdemir et al., 2004) and 3-[1-hydroxyimino-2-(succinimido)ethyl]1-methyl-1-phenylcyclobutane,(III) (Dinçer et al., 2004). The main aim of the present investigation is to study the differences between the structures of (I), (II) and (III), and also to determine the strength of the hydrogen-bonding capabilities of the oxime group.

The structures of the two independent molecules, A (O1/N1/N2/C1–C18) and B (O2/N3/N4/C19–C36), of (I) have very similar molecular dimensions (Fig. 1 and Table 1). In the following discussion, values for molecule B are quoted in square brackets. In the crystal structure, the phenyl and (piperidin-1-yl)acetaldehyde oxime groups are in cis positions with respect to the cyclobutane ring. The four-atom bridge linking the cyclobutane and piperidine rings is not planar, and the ΦCC torsion angle is 82.9 (5)° [−83.3 (5)°], which shows that the conformation about the C—C bond is synclinal.

Although close to being planar, the cyclobutane ring in (I) is more puckered than in (II) and (III), because of the steric hindrance of the substituents. The C4/C1/C2 plane forms a dihedral angle of 25.0 (4)° [25.7 (4)°] with the C2/C3/C4 plane [11.55 (3)° in (II), 19.26 (17)° in (III)]. However, when the bond lengths of the cylobutane ring in (I) are compared with those in (II) and (III), it is seen that there are no significant differences. The piperidine ring adopts a chair conformation, as is evident from the Cremer and Pople (1975) puckering parameters Q = 0.569 (5) Å [0.562 (5) Å], θ = 176.8 (5)° [177.6 (6)°] and ϕ2 = 207 (10)° [138 (11)°]. The oxime moiety has an E configuration, with a C3—C11—N2—O1 torsion angle of 178.3 (4)° [−178.4 (4)°]. In (I), the plane of the oxime moiety is twisted by 45.2 (4)° [46.4 (4)°] out of the mean plane of the cyclobutane ring. The bond lengths and angles of the oxime moiety in (I) are close to those in (II) and (III).

In each independent molecule, a intramolecular C—H···O interaction generate a five-membered ring (Fig. 1). Atom O1 acts as hydrogen-bond donor to atom N1 of the piperidine ring at (x + 1/2, −y, z). Similiarly, atom O2 acts as hydrogen-bond donor to atom N3 of the piperidine ring at (x − 1/2, 1 − y, z). There are no intermolecular ππ and C—H···π interactions in the crystal structure of (I).

Experimental top

A solution of 3-(2-chloro-1-oxoethyl)-1-methyl-1-phenylcyclobutane (2.225 g, 10 mmol) and piperidine (1.70 g, 20 mmol) in absolute ethanol (50 ml) was refluxed with continuous stirring. After completion of the reaction, NH2OH·HCl (0.695 g, 10 mmol) was added. The course of both reactions was monitored by IR. The mixture was cooled to room temperature and neutralized with aqueous dilute ammonia (5%) to obtain the target product. It was filtered, washed with copious cold ethanol, recrystallized from ethanol and dried in air (yield 2.29 g, 80%; m.p. 425 K). IR (KBr, ν, cm−1): 3253 (–OH, oxime), 1613 (CN); 1H NMR (CDCl3, TMS, δ, p.p.m.): 1.26–1.65 (m, 6H, –CH2– piperidine), 1.53 (s, 3H, –CH3 on cyclobutane), 2.25–2.60 (m, 8H, –CH2–, cyclobutane –CH2– plus piperidine –CH2– adjacent to N), 3.22 (s, 2H, –CH2–, adjacent to oxime), 3.79 (q, 1H, j = 3.67 Hz, >CH–), 7.01–7.35 (m, 5H, aromatics), 10.48 (s, 1H, –OH, D2O exchangeable).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.82 Å for OH, 0.93 Å for aromatic CH, 0.96 Å for CH3, 0.97 Å for CH2, and at 0.98 Å for CH group. The Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxyl and methyl H atoms and 1.2Ueq for the remaining H atoms. The same anisotropic displacement parameters were used for the atoms N2 and C11. Owing to the absence of any significant anomalous scatterers in the molecule, Friedel pairs were merged before the final refinement and the configuration is arbitrarily assigned.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) plot of the two independent molecules of (I), showing 30% probability displacement ellipsoids and the atomic numbering scheme. Dashed lines represent intramolecular C—H···O hydrogen bonds.
[Figure 2] Fig. 2. A projection of the crystal structure of (I) along the b axis. Dashed lines indicate the O—H···N hydrogen bonds.
1-(3-Methyl-3-phenylcyclobutyl)-2-(piperidin-1-yl)ethanone oxime top
Crystal data top
C18H26N2OF(000) = 1248
Mr = 286.41Dx = 1.114 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 14206 reflections
a = 10.8782 (5) Åθ = 1.2–21.5°
b = 5.8899 (3) ŵ = 0.07 mm1
c = 53.307 (3) ÅT = 296 K
V = 3415.5 (3) Å3Prism, colourless
Z = 80.64 × 0.45 × 0.13 mm
Data collection top
Stoe IPDS-II
diffractometer
1661 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.124
Plane graphite monochromatorθmax = 21.5°, θmin = 1.5°
Detector resolution: 6.67 pixels mm-1h = 1111
ω scansk = 66
16092 measured reflectionsl = 5454
1988 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0796P)2]
where P = (Fo2 + 2Fc2)/3
1988 reflections(Δ/σ)max = 0.001
374 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C18H26N2OV = 3415.5 (3) Å3
Mr = 286.41Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 10.8782 (5) ŵ = 0.07 mm1
b = 5.8899 (3) ÅT = 296 K
c = 53.307 (3) Å0.64 × 0.45 × 0.13 mm
Data collection top
Stoe IPDS-II
diffractometer
1661 reflections with I > 2σ(I)
16092 measured reflectionsRint = 0.124
1988 independent reflectionsθmax = 21.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
1988 reflectionsΔρmin = 0.11 e Å3
374 parameters
Special details top

Experimental. Because of the long c cell parameter, the reflection spots were rather close to each other and to prevent the overlopping of these reflections the crystal to detector distance was increased to 180 mm resulting in the decrease of 2θmaximum. Attempts to decrease the crystal to detector distance from 180 mm resulted in the partial overlapping of peaks. The poor data/parameter ratio (5.32), low precision on C—C bonds (0.008 Å) and high displacement parameters may be due to low resolution.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0890 (3)0.0766 (6)0.20274 (7)0.0993 (9)
H11.15590.01510.20470.149*
N10.7813 (3)0.2120 (6)0.21340 (7)0.0804 (9)
N21.0216 (3)0.0413 (7)0.18447 (8)0.0861 (8)
C10.8266 (4)0.1345 (8)0.12084 (10)0.0876 (13)
C20.8964 (4)0.2409 (8)0.14313 (9)0.0923 (13)
H2A0.87130.39520.14690.111*
H2B0.98510.23010.14170.111*
C30.8397 (4)0.0624 (9)0.16066 (9)0.0887 (13)
H30.76390.12160.16810.106*
C40.8090 (5)0.0807 (9)0.13700 (10)0.0988 (14)
H4A0.72580.13980.13680.119*
H4B0.86830.19970.13350.119*
C50.8440 (4)0.1039 (9)0.23447 (9)0.0906 (13)
H5A0.90830.20340.24070.109*
H5B0.88210.03630.22890.109*
C60.7538 (6)0.0538 (10)0.25537 (10)0.1057 (16)
H6A0.69260.05320.24940.127*
H6B0.79710.01600.26930.127*
C70.6908 (5)0.2660 (11)0.26430 (11)0.1155 (17)
H7A0.75020.36500.27230.139*
H7B0.62840.22700.27660.139*
C80.6318 (5)0.3884 (9)0.24234 (11)0.1073 (16)
H8A0.60020.53400.24790.129*
H8B0.56330.29950.23610.129*
C90.7248 (4)0.4251 (9)0.22141 (10)0.0967 (14)
H9A0.68410.49520.20720.116*
H9B0.78840.52790.22720.116*
C100.8686 (4)0.2593 (8)0.19264 (9)0.0872 (13)
H10A0.93730.34640.19920.105*
H10B0.82760.35140.18010.105*
C110.9170 (4)0.0473 (8)0.18038 (9)0.0861 (8)
C120.7055 (5)0.2525 (11)0.11516 (12)0.1171 (18)
H12A0.66560.17760.10140.176*
H12B0.65340.24650.12970.176*
H12C0.72090.40810.11080.176*
C130.9004 (4)0.1024 (9)0.09683 (10)0.0882 (13)
C140.8871 (5)0.0901 (10)0.08221 (11)0.1075 (16)
H140.83070.20100.08690.129*
C150.9570 (6)0.1200 (12)0.06054 (11)0.1183 (18)
H150.94800.25060.05090.142*
C161.0368 (7)0.0406 (16)0.05377 (13)0.127 (2)
H161.08410.01990.03940.153*
C171.0507 (6)0.2358 (12)0.06755 (12)0.1179 (17)
H171.10570.34760.06250.141*
C180.9822 (5)0.2633 (9)0.08893 (11)0.1034 (15)
H180.99160.39530.09830.124*
O20.6441 (3)0.4251 (6)0.36612 (7)0.0987 (9)
H20.57840.49010.36380.148*
N30.9494 (3)0.2861 (6)0.35525 (6)0.0802 (10)
N40.7120 (4)0.5424 (7)0.38445 (8)0.0941 (11)
C190.9078 (4)0.6470 (9)0.44767 (9)0.0925 (13)
C200.9178 (4)0.4234 (9)0.43260 (9)0.0963 (14)
H20A0.85400.31390.43650.116*
H20B0.99860.35390.43330.116*
C210.8935 (4)0.5610 (9)0.40819 (10)0.0947 (14)
H210.97190.60900.40090.114*
C220.8423 (4)0.7506 (8)0.42458 (9)0.0928 (13)
H22A0.75330.74970.42590.111*
H22B0.87210.90030.42010.111*
C231.0068 (4)0.0759 (8)0.34713 (10)0.0974 (14)
H23A0.94370.02830.34140.117*
H23B1.04840.00630.36130.117*
C241.0978 (5)0.1147 (9)0.32631 (11)0.1078 (16)
H24A1.16590.20450.33260.129*
H24B1.13030.03030.32080.129*
C251.0408 (6)0.2344 (11)0.30446 (12)0.1190 (18)
H25A0.98150.13540.29640.143*
H25B1.10370.27290.29230.143*
C260.9776 (5)0.4479 (10)0.31339 (10)0.1047 (16)
H26A0.93410.51750.29950.126*
H26B1.03860.55500.31940.126*
C270.8874 (4)0.3957 (8)0.33434 (9)0.0877 (13)
H27A0.84950.53550.34010.105*
H27B0.82310.29700.32810.105*
C280.8644 (4)0.2399 (8)0.37602 (8)0.0858 (12)
H28A0.90620.14720.38840.103*
H28B0.79520.15330.36970.103*
C290.8167 (4)0.4522 (8)0.38864 (9)0.0856 (13)
C301.0350 (5)0.7532 (12)0.45217 (14)0.141 (2)
H30A1.08070.75350.43680.211*
H30B1.07860.66610.46450.211*
H30C1.02530.90630.45800.211*
C310.8381 (4)0.6423 (9)0.47188 (10)0.0950 (14)
C320.7628 (6)0.8196 (10)0.47849 (10)0.1110 (16)
H320.75460.94160.46750.133*
C330.6981 (6)0.8225 (13)0.50121 (13)0.134 (2)
H330.64870.94600.50530.160*
C340.7076 (7)0.6463 (14)0.51713 (13)0.139 (2)
H340.66600.64960.53240.167*
C350.7769 (7)0.4659 (14)0.51115 (13)0.141 (2)
H350.78140.34270.52200.169*
C360.8428 (6)0.4629 (11)0.48844 (13)0.123 (2)
H360.89070.33690.48450.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0867 (18)0.111 (2)0.100 (2)0.0044 (16)0.0038 (17)0.0075 (19)
N10.0729 (19)0.087 (2)0.081 (2)0.0055 (18)0.0010 (19)0.0003 (18)
N20.0771 (16)0.099 (2)0.082 (2)0.0025 (16)0.0015 (16)0.0012 (16)
C10.076 (2)0.097 (3)0.090 (3)0.003 (2)0.007 (2)0.009 (3)
C20.096 (3)0.091 (3)0.090 (3)0.004 (2)0.000 (3)0.004 (3)
C30.079 (3)0.105 (3)0.083 (3)0.001 (2)0.003 (2)0.000 (3)
C40.088 (3)0.106 (4)0.102 (4)0.017 (3)0.005 (3)0.007 (3)
C50.085 (3)0.106 (3)0.080 (3)0.003 (3)0.001 (2)0.011 (2)
C60.107 (3)0.125 (4)0.085 (4)0.003 (3)0.009 (3)0.010 (3)
C70.122 (4)0.135 (4)0.090 (3)0.003 (4)0.017 (3)0.011 (3)
C80.100 (3)0.113 (4)0.108 (4)0.009 (3)0.014 (3)0.019 (3)
C90.091 (3)0.094 (3)0.104 (4)0.012 (3)0.007 (3)0.004 (3)
C100.084 (3)0.091 (3)0.086 (3)0.000 (2)0.004 (2)0.006 (2)
C110.0771 (16)0.099 (2)0.082 (2)0.0025 (16)0.0015 (16)0.0012 (16)
C120.099 (3)0.136 (5)0.116 (4)0.018 (3)0.001 (3)0.007 (3)
C130.084 (3)0.095 (3)0.085 (3)0.003 (2)0.016 (3)0.001 (3)
C140.117 (4)0.116 (4)0.090 (4)0.012 (3)0.010 (3)0.001 (3)
C150.141 (5)0.122 (4)0.091 (4)0.007 (4)0.015 (4)0.012 (3)
C160.139 (5)0.146 (6)0.096 (4)0.015 (5)0.004 (4)0.003 (4)
C170.121 (4)0.135 (5)0.098 (4)0.012 (3)0.009 (3)0.008 (4)
C180.103 (3)0.109 (4)0.099 (4)0.008 (3)0.000 (3)0.002 (3)
O20.0896 (18)0.110 (2)0.097 (2)0.0034 (17)0.0006 (18)0.009 (2)
N30.0721 (18)0.089 (2)0.079 (2)0.0039 (18)0.0017 (18)0.0051 (18)
N40.088 (2)0.101 (3)0.093 (3)0.004 (2)0.006 (2)0.003 (2)
C190.083 (3)0.102 (3)0.093 (3)0.001 (2)0.003 (2)0.004 (3)
C200.088 (3)0.110 (4)0.091 (4)0.016 (3)0.008 (3)0.003 (3)
C210.082 (3)0.114 (3)0.089 (4)0.008 (3)0.008 (3)0.003 (3)
C220.104 (3)0.091 (3)0.084 (3)0.006 (3)0.004 (3)0.000 (2)
C230.095 (3)0.093 (3)0.104 (4)0.010 (3)0.010 (3)0.002 (3)
C240.098 (3)0.111 (4)0.115 (4)0.016 (3)0.012 (3)0.014 (3)
C250.121 (4)0.134 (5)0.102 (4)0.002 (4)0.021 (4)0.011 (4)
C260.111 (4)0.117 (4)0.086 (4)0.002 (3)0.009 (3)0.011 (3)
C270.083 (3)0.100 (3)0.080 (3)0.004 (2)0.001 (2)0.003 (2)
C280.087 (3)0.089 (3)0.081 (3)0.005 (2)0.006 (2)0.008 (2)
C290.075 (3)0.098 (3)0.084 (3)0.006 (3)0.013 (2)0.010 (3)
C300.102 (3)0.181 (6)0.140 (5)0.033 (4)0.004 (3)0.036 (5)
C310.099 (3)0.094 (3)0.093 (3)0.005 (3)0.010 (3)0.001 (3)
C320.125 (4)0.115 (4)0.094 (4)0.009 (4)0.009 (3)0.014 (3)
C330.149 (5)0.140 (5)0.112 (5)0.018 (4)0.012 (4)0.001 (4)
C340.172 (6)0.152 (6)0.094 (4)0.002 (5)0.017 (4)0.003 (5)
C350.180 (6)0.149 (6)0.095 (5)0.019 (5)0.003 (5)0.031 (4)
C360.143 (5)0.115 (4)0.113 (5)0.024 (4)0.014 (4)0.014 (4)
Geometric parameters (Å, º) top
O1—N21.403 (5)O2—N41.406 (5)
O1—H10.82O2—H20.82
N1—C51.460 (6)N3—C271.453 (6)
N1—C91.461 (6)N3—C231.452 (6)
N1—C101.485 (5)N3—C281.468 (5)
N2—C111.271 (6)N4—C291.276 (6)
C1—C121.520 (7)C19—C311.497 (7)
C1—C131.523 (7)C19—C301.537 (7)
C1—C21.543 (7)C19—C201.546 (7)
C1—C41.544 (7)C19—C221.548 (7)
C2—C31.536 (7)C20—C211.556 (7)
C2—H2A0.97C20—H20A0.97
C2—H2B0.97C20—H20B0.97
C3—C111.493 (7)C21—C291.481 (7)
C3—C41.554 (7)C21—C221.524 (7)
C3—H30.98C21—H210.98
C4—H4A0.97C22—H22A0.97
C4—H4B0.97C22—H22B0.97
C5—C61.514 (7)C23—C241.505 (7)
C5—H5A0.97C23—H23A0.97
C5—H5B0.97C23—H23B0.97
C6—C71.503 (8)C24—C251.497 (8)
C6—H6A0.97C24—H24A0.97
C6—H6B0.97C24—H24B0.97
C7—C81.517 (8)C25—C261.510 (8)
C7—H7A0.97C25—H25A0.97
C7—H7B0.97C25—H25B0.97
C8—C91.522 (7)C26—C271.518 (7)
C8—H8A0.97C26—H26A0.97
C8—H8B0.97C26—H26B0.97
C9—H9A0.97C27—H27A0.97
C9—H9B0.97C27—H27B0.97
C10—C111.504 (7)C28—C291.512 (7)
C10—H10A0.97C28—H28A0.97
C10—H10B0.97C28—H28B0.97
C12—H12A0.96C30—H30A0.96
C12—H12B0.96C30—H30B0.96
C12—H12C0.96C30—H30C0.96
C13—C181.366 (7)C31—C321.373 (7)
C13—C141.383 (8)C31—C361.378 (8)
C14—C151.394 (8)C32—C331.401 (8)
C14—H140.93C32—H320.93
C15—C161.334 (9)C33—C341.344 (9)
C15—H150.93C33—H330.93
C16—C171.372 (10)C34—C351.341 (9)
C16—H160.93C34—H340.93
C17—C181.371 (8)C35—C361.407 (9)
C17—H170.93C35—H350.93
C18—H180.93C36—H360.93
N2—O1—H1109.5N4—O2—H2109.5
C5—N1—C9110.2 (4)C27—N3—C23110.4 (4)
C5—N1—C10110.8 (3)C27—N3—C28111.6 (3)
C9—N1—C10109.0 (3)C23—N3—C28109.7 (4)
C11—N2—O1112.5 (4)C29—N4—O2112.7 (4)
C12—C1—C13110.3 (4)C31—C19—C30109.2 (5)
C12—C1—C2113.2 (5)C31—C19—C20117.9 (4)
C13—C1—C2116.0 (4)C30—C19—C20111.4 (4)
C12—C1—C4112.3 (4)C31—C19—C22117.3 (4)
C13—C1—C4115.6 (4)C30—C19—C22112.2 (5)
C2—C1—C488.0 (4)C20—C19—C2287.4 (4)
C3—C2—C189.6 (3)C19—C20—C2188.8 (4)
C3—C2—H2A113.7C19—C20—H20A113.9
C1—C2—H2A113.7C21—C20—H20A113.9
C3—C2—H2B113.7C19—C20—H20B113.9
C1—C2—H2B113.7C21—C20—H20B113.9
H2A—C2—H2B111.0H20A—C20—H20B111.1
C11—C3—C2119.9 (4)C29—C21—C22120.9 (4)
C11—C3—C4117.3 (4)C29—C21—C20117.3 (4)
C2—C3—C487.9 (4)C22—C21—C2088.0 (4)
C11—C3—H3110.0C29—C21—H21109.6
C2—C3—H3110.0C22—C21—H21109.6
C4—C3—H3110.0C20—C21—H21109.6
C1—C4—C388.9 (4)C21—C22—C1989.9 (4)
C1—C4—H4A113.8C21—C22—H22A113.7
C3—C4—H4A113.8C19—C22—H22A113.7
C1—C4—H4B113.8C21—C22—H22B113.7
C3—C4—H4B113.8C19—C22—H22B113.7
H4A—C4—H4B111.1H22A—C22—H22B110.9
N1—C5—C6110.3 (4)N3—C23—C24111.9 (4)
N1—C5—H5A109.6N3—C23—H23A109.2
C6—C5—H5A109.6C24—C23—H23A109.2
N1—C5—H5B109.6N3—C23—H23B109.2
C6—C5—H5B109.6C24—C23—H23B109.2
H5A—C5—H5B108.1H23A—C23—H23B107.9
C7—C6—C5111.5 (5)C25—C24—C23111.9 (4)
C7—C6—H6A109.3C25—C24—H24A109.2
C5—C6—H6A109.3C23—C24—H24A109.2
C7—C6—H6B109.3C25—C24—H24B109.2
C5—C6—H6B109.3C23—C24—H24B109.2
H6A—C6—H6B108.0H24A—C24—H24B107.9
C6—C7—C8110.1 (5)C24—C25—C26109.6 (5)
C6—C7—H7A109.6C24—C25—H25A109.7
C8—C7—H7A109.6C26—C25—H25A109.7
C6—C7—H7B109.6C24—C25—H25B109.7
C8—C7—H7B109.6C26—C25—H25B109.7
H7A—C7—H7B108.2H25A—C25—H25B108.2
C7—C8—C9110.6 (4)C25—C26—C27110.9 (5)
C7—C8—H8A109.5C25—C26—H26A109.4
C9—C8—H8A109.5C27—C26—H26A109.4
C7—C8—H8B109.5C25—C26—H26B109.4
C9—C8—H8B109.5C27—C26—H26B109.4
H8A—C8—H8B108.1H26A—C26—H26B108.0
N1—C9—C8111.8 (4)N3—C27—C26110.8 (4)
N1—C9—H9A109.2N3—C27—H27A109.5
C8—C9—H9A109.2C26—C27—H27A109.5
N1—C9—H9B109.2N3—C27—H27B109.5
C8—C9—H9B109.2C26—C27—H27B109.5
H9A—C9—H9B107.9H27A—C27—H27B108.1
N1—C10—C11113.1 (4)N3—C28—C29113.5 (4)
N1—C10—H10A109.0N3—C28—H28A108.9
C11—C10—H10A109.0C29—C28—H28A108.9
N1—C10—H10B109.0N3—C28—H28B108.9
C11—C10—H10B109.0C29—C28—H28B108.9
H10A—C10—H10B107.8H28A—C28—H28B107.7
N2—C11—C3116.6 (4)N4—C29—C21116.5 (4)
N2—C11—C10125.4 (4)N4—C29—C28124.9 (5)
C3—C11—C10117.9 (4)C21—C29—C28118.5 (4)
C1—C12—H12A109.5C19—C30—H30A109.5
C1—C12—H12B109.5C19—C30—H30B109.5
H12A—C12—H12B109.5H30A—C30—H30B109.5
C1—C12—H12C109.5C19—C30—H30C109.5
H12A—C12—H12C109.5H30A—C30—H30C109.5
H12B—C12—H12C109.5H30B—C30—H30C109.5
C18—C13—C14117.6 (5)C32—C31—C36116.2 (5)
C18—C13—C1121.1 (5)C32—C31—C19120.6 (5)
C14—C13—C1121.3 (5)C36—C31—C19123.2 (5)
C13—C14—C15120.9 (6)C31—C32—C33122.0 (6)
C13—C14—H14119.6C31—C32—H32119.0
C15—C14—H14119.6C33—C32—H32119.0
C16—C15—C14119.3 (6)C34—C33—C32119.8 (7)
C16—C15—H15120.4C34—C33—H33120.1
C14—C15—H15120.4C32—C33—H33120.1
C15—C16—C17121.4 (7)C35—C34—C33120.3 (7)
C15—C16—H16119.3C35—C34—H34119.8
C17—C16—H16119.3C33—C34—H34119.8
C16—C17—C18118.9 (6)C34—C35—C36120.0 (7)
C16—C17—H17120.5C34—C35—H35120.0
C18—C17—H17120.5C36—C35—H35120.0
C13—C18—C17121.9 (5)C31—C36—C35121.5 (6)
C13—C18—H18119.1C31—C36—H36119.3
C17—C18—H18119.1C35—C36—H36119.3
C12—C1—C2—C395.6 (4)C31—C19—C20—C21137.8 (4)
C13—C1—C2—C3135.5 (4)C30—C19—C20—C2194.9 (5)
C4—C1—C2—C317.9 (4)C22—C19—C20—C2118.0 (3)
C1—C2—C3—C11138.3 (4)C19—C20—C21—C29142.4 (4)
C1—C2—C3—C417.8 (4)C19—C20—C21—C2218.3 (3)
C12—C1—C4—C396.7 (5)C29—C21—C22—C19139.3 (5)
C13—C1—C4—C3135.6 (4)C20—C21—C22—C1918.3 (4)
C2—C1—C4—C317.7 (4)C31—C19—C22—C21138.7 (4)
C11—C3—C4—C1140.6 (4)C30—C19—C22—C2193.7 (5)
C2—C3—C4—C117.8 (4)C20—C19—C22—C2118.4 (4)
C9—N1—C5—C660.0 (5)C27—N3—C23—C2458.2 (5)
C10—N1—C5—C6179.3 (4)C28—N3—C23—C24178.3 (4)
N1—C5—C6—C758.2 (6)N3—C23—C24—C2555.6 (6)
C5—C6—C7—C854.1 (6)C23—C24—C25—C2652.6 (6)
C6—C7—C8—C952.2 (6)C24—C25—C26—C2753.7 (6)
C5—N1—C9—C859.4 (5)C23—N3—C27—C2659.3 (5)
C10—N1—C9—C8178.8 (4)C28—N3—C27—C26178.4 (4)
C7—C8—C9—N155.5 (6)C25—C26—C27—N357.7 (6)
C5—N1—C10—C1167.4 (5)C27—N3—C28—C2967.1 (5)
C9—N1—C10—C11171.1 (4)C23—N3—C28—C29170.2 (4)
O1—N2—C11—C3178.3 (4)O2—N4—C29—C21178.4 (4)
O1—N2—C11—C102.0 (7)O2—N4—C29—C281.2 (6)
C2—C3—C11—N211.7 (7)C22—C21—C29—N47.7 (7)
C4—C3—C11—N2116.1 (5)C20—C21—C29—N4113.0 (5)
C2—C3—C11—C10164.9 (4)C22—C21—C29—C28169.8 (4)
C4—C3—C11—C1060.5 (6)C20—C21—C29—C2864.5 (5)
N1—C10—C11—N2100.9 (5)N3—C28—C29—N499.5 (5)
N1—C10—C11—C382.9 (5)N3—C28—C29—C2183.3 (5)
C12—C1—C13—C1890.5 (6)C30—C19—C31—C3291.4 (6)
C2—C1—C13—C1839.8 (6)C20—C19—C31—C32140.2 (5)
C4—C1—C13—C18140.8 (4)C22—C19—C31—C3237.7 (7)
C12—C1—C13—C1489.4 (6)C30—C19—C31—C3689.9 (7)
C2—C1—C13—C14140.3 (5)C20—C19—C31—C3638.5 (7)
C4—C1—C13—C1439.3 (6)C22—C19—C31—C36141.0 (5)
C18—C13—C14—C151.5 (8)C36—C31—C32—C332.4 (9)
C1—C13—C14—C15178.6 (5)C19—C31—C32—C33178.8 (5)
C13—C14—C15—C160.6 (9)C31—C32—C33—C340.9 (10)
C14—C15—C16—C170.7 (9)C32—C33—C34—C351.3 (11)
C15—C16—C17—C181.1 (10)C33—C34—C35—C361.8 (12)
C14—C13—C18—C171.1 (8)C32—C31—C36—C351.9 (9)
C1—C13—C18—C17179.0 (4)C19—C31—C36—C35179.3 (5)
C16—C17—C18—C130.2 (9)C34—C35—C36—C310.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.972.302.682 (5)102
C28—H28B···O20.972.302.685 (5)102
O2—H2···N3i0.821.982.778 (5)164
O1—H1···N1ii0.821.972.754 (5)161
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC18H26N2O
Mr286.41
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)10.8782 (5), 5.8899 (3), 53.307 (3)
V3)3415.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.64 × 0.45 × 0.13
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16092, 1988, 1661
Rint0.124
θmax (°)21.5
(sin θ/λ)max1)0.517
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.06
No. of reflections1988
No. of parameters374
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.11
Absolute structure parameter0 (10)

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O1—N21.403 (5)O2—N41.406 (5)
N1—C51.460 (6)N3—C271.453 (6)
N1—C91.461 (6)N3—C231.452 (6)
N1—C101.485 (5)N3—C281.468 (5)
N2—C111.271 (6)N4—C291.276 (6)
C1—C121.520 (7)C19—C311.497 (7)
C1—C131.523 (7)C19—C301.537 (7)
C1—C21.543 (7)C19—C201.546 (7)
C1—C41.544 (7)C19—C221.548 (7)
C2—C31.536 (7)C20—C211.556 (7)
C3—C111.493 (7)C21—C291.481 (7)
C3—C41.554 (7)C21—C221.524 (7)
C5—N1—C9110.2 (4)C27—N3—C23110.4 (4)
C5—N1—C10110.8 (3)C27—N3—C28111.6 (3)
C9—N1—C10109.0 (3)C23—N3—C28109.7 (4)
C11—N2—O1112.5 (4)C29—N4—O2112.7 (4)
C2—C1—C488.0 (4)C20—C19—C2287.4 (4)
C3—C2—C189.6 (3)C19—C20—C2188.8 (4)
C2—C3—C487.9 (4)C22—C21—C2088.0 (4)
C1—C4—C388.9 (4)C21—C22—C1989.9 (4)
N1—C10—C11113.1 (4)N3—C28—C29113.5 (4)
N2—C11—C3116.6 (4)N4—C29—C21116.5 (4)
N2—C11—C10125.4 (4)N4—C29—C28124.9 (5)
C3—C11—C10117.9 (4)C21—C29—C28118.5 (4)
C5—N1—C10—C1167.4 (5)C27—N3—C28—C2967.1 (5)
C9—N1—C10—C11171.1 (4)C23—N3—C28—C29170.2 (4)
O1—N2—C11—C102.0 (7)O2—N4—C29—C281.2 (6)
C2—C3—C11—N211.7 (7)C22—C21—C29—N47.7 (7)
C4—C3—C11—N2116.1 (5)C20—C21—C29—N4113.0 (5)
C2—C3—C11—C10164.9 (4)C22—C21—C29—C28169.8 (4)
C4—C3—C11—C1060.5 (6)C20—C21—C29—C2864.5 (5)
N1—C10—C11—N2100.9 (5)N3—C28—C29—N499.5 (5)
N1—C10—C11—C382.9 (5)N3—C28—C29—C2183.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.972.302.682 (5)102
C28—H28B···O20.972.302.685 (5)102
O2—H2···N3i0.821.982.778 (5)164
O1—H1···N1ii0.821.972.754 (5)161
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds