Download citation
Download citation
link to html
The title compound, 6,6a,11,14-tetra­hydro-8-hydr­oxy-9-meth­oxy-12H-benzo[a]-1,3-benzodioxolo[4,5-g]quinolizine, C19H19NO4, a protoberberine-type alkaloid, was isolated from the roots of the plant Sinomenium acutum. Both the piperidine rings adopt half-chair conformations. The mol­ecules exist in a dimeric form through O—H...O hydrogen bonding between the hydr­oxy group and meth­oxy O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039711/ci6705sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039711/ci6705Isup2.hkl
Contains datablock I

CCDC reference: 296533

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.089
  • Data-to-parameter ratio = 7.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.48
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _reflns_number_total 1669 Count of symmetry unique reflns 1670 Completeness (_total/calc) 99.94% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Sinomenium acutum is distributed mainly in hilly regions of southwest, northwest and southeast China. The roots and stems of the plant are used as folk medicine to cure rheumatism, dropsy and dermatophytosis. A number of alkaloids with different kinds of skeletons have been isolated from the plant (Jiangsu New Medical College, 1985; Chen et al., 1991; Moriyasu et al., 1993, 1994). In the course of our systematic search for bioactive substances from Chinese traditional herb medicines, we have studied the roots of S. acutum and obtained the title compound, (I). Compound (I) was first isolated in some species of Corydalis and identified on the basis of its mass and its NMR, IR and UV spectra (Blask et al., 1981; Haisov & Slavk, 1973). We report here the crystal structure of (I).

The benzo[1,3]dioxole ring system is essentially planar (Fig. 1). Both the piperidine rings adopt half-chair conformations. The methoxy group attached at atom C3 is twisted away from the benzene ring with a torsion angle C20—O4—C3—C4 of 25.2 (4)°. In the crystal packing, intermolecular hydrogen bonding between the hydroxy group and the methoxy O atom of an adjacent molecule leads to the formation of dimers (Fig. 2). In addition, a C—H···π interaction is observed (Table 1).

Experimental top

Sinomenine is produced from the powder of the roots of S. acutum by the Baoji Yongjia Plant Medicine Extracting Limited Company, Baoji, People's Republic of China. It is obtained from the benzene extract of the powder in a vacuum (Chen et al., 1995). The remaining benzene mother liquor (3 kg), after the extraction of sinomenine, was obtained from the company. It was subjected to repeated chromatography on a silica gel column, and eluted with petroleum ether/acetone (from 20:1 to 3:1) to afford compound (I) (0.2 g). Single crystals of (I) were obtained after repeated recrystallization from acetone.

Refinement top

The hydroxy H atom was located in a difference Fourier map and refined freely. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I), showing O—H···O hydrogen-bonded (dashed lines) dimers. H atoms not involved in the interactions shown have been omitted.
6,6a,11,14-Tetrahydro-8-hydroxy-9-methoxy-12H-benzo[a]- 1,3-benzodioxolo[4,5-g]quinolizine top
Crystal data top
C19H19NO4F(000) = 688
Mr = 325.35Dx = 1.358 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 39 reflections
a = 13.314 (2) Åθ = 2.6–11.5°
b = 5.151 (1) ŵ = 0.10 mm1
c = 23.585 (3) ÅT = 296 K
β = 100.39 (1)°Rhombohedron, yellow
V = 1590.9 (4) Å30.48 × 0.34 × 0.14 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.013
Radiation source: normal-focus sealed tubeθmax = 25.5°, θmin = 1.8°
Graphite monochromatorh = 016
ω scansk = 06
1816 measured reflectionsl = 2828
1669 independent reflections3 standard reflections every 97 reflections
1331 reflections with I > 2σ(I) intensity decay: 3.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
1669 reflectionsΔρmax = 0.14 e Å3
223 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0144 (14)
Crystal data top
C19H19NO4V = 1590.9 (4) Å3
Mr = 325.35Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.314 (2) ŵ = 0.10 mm1
b = 5.151 (1) ÅT = 296 K
c = 23.585 (3) Å0.48 × 0.34 × 0.14 mm
β = 100.39 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.013
1816 measured reflections3 standard reflections every 97 reflections
1669 independent reflections intensity decay: 3.9%
1331 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.14 e Å3
1669 reflectionsΔρmin = 0.14 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82863 (15)1.3199 (5)0.40355 (8)0.0684 (8)
O20.70057 (17)1.4199 (5)0.45455 (8)0.0682 (7)
O30.45140 (13)0.3567 (5)0.07211 (8)0.0537 (6)
O40.60253 (14)0.0927 (4)0.03625 (7)0.0509 (6)
N70.79074 (14)0.7517 (5)0.26188 (8)0.0368 (5)
C10.56992 (19)0.5446 (6)0.14804 (10)0.0406 (7)
H10.51600.63160.15980.049*
C20.54997 (18)0.3825 (6)0.10126 (10)0.0388 (7)
C30.63021 (19)0.2486 (6)0.08397 (9)0.0377 (7)
C40.72871 (18)0.2873 (6)0.11289 (10)0.0376 (6)
H40.78230.19910.10110.045*
C50.85767 (18)0.5095 (6)0.18788 (11)0.0388 (7)
H5A0.89970.52520.15850.047*
H5B0.88310.36460.21260.047*
C60.86563 (18)0.7558 (6)0.22322 (11)0.0414 (7)
H6A0.93390.77130.24570.050*
H6B0.85320.90490.19780.050*
C80.8125 (2)0.9656 (7)0.30289 (11)0.0477 (8)
H8A0.82251.12320.28210.057*
H8B0.87550.92920.32940.057*
C90.7416 (2)1.1829 (7)0.38215 (10)0.0457 (8)
C100.6660 (2)1.2426 (7)0.41200 (10)0.0503 (8)
C110.5717 (2)1.1338 (8)0.39869 (11)0.0596 (10)
H110.52001.17570.41880.072*
C120.5563 (2)0.9556 (8)0.35317 (11)0.0573 (9)
H120.49280.87650.34310.069*
C130.61563 (17)0.7075 (6)0.27260 (10)0.0424 (8)
H13A0.54510.71880.25320.051*
H13B0.62790.53150.28680.051*
C140.74894 (17)0.4575 (5)0.15967 (9)0.0330 (6)
C150.66902 (18)0.5829 (6)0.17850 (9)0.0341 (6)
C160.68580 (16)0.7671 (6)0.22975 (9)0.0352 (6)
H160.67270.94490.21560.042*
C170.72891 (19)1.0100 (6)0.33682 (10)0.0401 (7)
C180.63294 (18)0.8930 (6)0.32253 (9)0.0410 (7)
C190.8035 (3)1.4720 (9)0.44975 (13)0.0719 (11)
H19A0.84861.42800.48550.086*
H19B0.81181.65510.44210.086*
C200.6676 (2)0.1137 (6)0.02803 (11)0.0493 (7)
H20A0.72650.04680.01470.059*
H20B0.63190.23190.00000.059*
H20C0.68890.20340.06390.059*
H3O0.443 (2)0.248 (8)0.0411 (14)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0617 (13)0.093 (2)0.0515 (11)0.0232 (15)0.0136 (10)0.0308 (14)
O20.0771 (14)0.0825 (19)0.0477 (10)0.0066 (15)0.0183 (10)0.0245 (13)
O30.0370 (10)0.0749 (16)0.0450 (11)0.0030 (12)0.0038 (8)0.0146 (12)
O40.0563 (12)0.0531 (13)0.0387 (9)0.0139 (11)0.0038 (9)0.0134 (11)
N70.0307 (11)0.0462 (14)0.0336 (10)0.0025 (11)0.0058 (8)0.0058 (11)
C10.0348 (13)0.0514 (19)0.0360 (12)0.0088 (14)0.0076 (10)0.0018 (14)
C20.0335 (13)0.0487 (18)0.0330 (12)0.0012 (14)0.0023 (10)0.0017 (14)
C30.0449 (14)0.0402 (17)0.0275 (11)0.0048 (14)0.0051 (11)0.0019 (13)
C40.0394 (14)0.0369 (16)0.0371 (13)0.0075 (13)0.0089 (11)0.0044 (14)
C50.0326 (13)0.0399 (17)0.0450 (13)0.0014 (13)0.0096 (11)0.0005 (14)
C60.0316 (13)0.0470 (18)0.0471 (14)0.0042 (14)0.0108 (11)0.0000 (15)
C80.0402 (14)0.060 (2)0.0433 (13)0.0069 (16)0.0092 (12)0.0105 (17)
C90.0470 (16)0.057 (2)0.0333 (13)0.0073 (15)0.0065 (12)0.0019 (15)
C100.0603 (18)0.060 (2)0.0309 (13)0.0045 (17)0.0076 (13)0.0085 (16)
C110.0539 (18)0.089 (3)0.0399 (14)0.007 (2)0.0178 (13)0.0110 (18)
C120.0437 (15)0.086 (3)0.0437 (14)0.0083 (18)0.0118 (12)0.0098 (18)
C130.0327 (13)0.059 (2)0.0354 (13)0.0049 (14)0.0062 (11)0.0048 (15)
C140.0336 (12)0.0323 (15)0.0333 (12)0.0046 (12)0.0064 (10)0.0061 (13)
C150.0354 (13)0.0360 (15)0.0307 (12)0.0000 (13)0.0054 (10)0.0006 (13)
C160.0317 (13)0.0380 (16)0.0353 (12)0.0019 (13)0.0047 (10)0.0002 (13)
C170.0400 (14)0.0489 (17)0.0313 (12)0.0009 (14)0.0063 (10)0.0003 (14)
C180.0401 (14)0.0525 (19)0.0306 (12)0.0003 (15)0.0072 (10)0.0009 (14)
C190.082 (2)0.082 (3)0.0537 (17)0.017 (2)0.0199 (16)0.023 (2)
C200.0648 (18)0.0365 (17)0.0467 (15)0.0039 (16)0.0104 (13)0.0049 (15)
Geometric parameters (Å, º) top
O1—C91.373 (3)C8—C171.500 (3)
O1—C191.430 (4)C8—H8A0.97
O2—C101.373 (3)C8—H8B0.97
O2—C191.421 (4)C9—C101.363 (4)
O3—C21.374 (3)C9—C171.378 (4)
O3—H3O0.91 (4)C10—C111.360 (4)
O4—C31.378 (3)C11—C121.399 (4)
O4—C201.407 (3)C11—H110.93
N7—C81.461 (4)C12—C181.391 (3)
N7—C161.467 (3)C12—H120.93
N7—C61.468 (3)C13—C181.501 (4)
C1—C21.371 (3)C13—C161.526 (3)
C1—C151.398 (3)C13—H13A0.97
C1—H10.93C13—H13B0.97
C2—C31.393 (3)C14—C151.385 (3)
C3—C41.379 (3)C15—C161.521 (3)
C4—C141.397 (3)C16—H160.98
C4—H40.93C17—C181.398 (4)
C5—C141.504 (3)C19—H19A0.97
C5—C61.511 (4)C19—H19B0.97
C5—H5A0.97C20—H20A0.96
C5—H5B0.97C20—H20B0.96
C6—H6A0.97C20—H20C0.96
C6—H6B0.97
C9—O1—C19105.3 (2)C10—C11—C12116.7 (3)
C10—O2—C19105.6 (2)C10—C11—H11121.7
C2—O3—H3O116 (2)C12—C11—H11121.7
C3—O4—C20118.2 (2)C18—C12—C11122.1 (3)
C8—N7—C16111.0 (2)C18—C12—H12119.0
C8—N7—C6109.0 (2)C11—C12—H12119.0
C16—N7—C6111.64 (18)C18—C13—C16111.5 (2)
C2—C1—C15121.8 (2)C18—C13—H13A109.3
C2—C1—H1119.1C16—C13—H13A109.3
C15—C1—H1119.1C18—C13—H13B109.3
C1—C2—O3119.4 (2)C16—C13—H13B109.3
C1—C2—C3119.3 (2)H13A—C13—H13B108.0
O3—C2—C3121.3 (2)C15—C14—C4119.8 (2)
O4—C3—C4125.4 (2)C15—C14—C5120.6 (2)
O4—C3—C2114.9 (2)C4—C14—C5119.6 (2)
C4—C3—C2119.6 (2)C14—C15—C1118.6 (2)
C3—C4—C14120.8 (2)C14—C15—C16122.3 (2)
C3—C4—H4119.6C1—C15—C16119.1 (2)
C14—C4—H4119.6N7—C16—C15111.5 (2)
C14—C5—C6111.1 (2)N7—C16—C13106.67 (18)
C14—C5—H5A109.4C15—C16—C13112.4 (2)
C6—C5—H5A109.4N7—C16—H16108.7
C14—C5—H5B109.4C15—C16—H16108.7
C6—C5—H5B109.4C13—C16—H16108.7
H5A—C5—H5B108.0C9—C17—C18116.4 (2)
N7—C6—C5110.0 (2)C9—C17—C8120.9 (3)
N7—C6—H6A109.7C18—C17—C8122.6 (2)
C5—C6—H6A109.7C12—C18—C17119.9 (3)
N7—C6—H6B109.7C12—C18—C13122.1 (2)
C5—C6—H6B109.7C17—C18—C13117.9 (2)
H6A—C6—H6B108.2O2—C19—O1108.6 (3)
N7—C8—C17113.0 (2)O2—C19—H19A110.0
N7—C8—H8A109.0O1—C19—H19A110.0
C17—C8—H8A109.0O2—C19—H19B110.0
N7—C8—H8B109.0O1—C19—H19B110.0
C17—C8—H8B109.0H19A—C19—H19B108.4
H8A—C8—H8B107.8O4—C20—H20A109.5
C10—C9—O1110.3 (2)O4—C20—H20B109.5
C10—C9—C17123.2 (3)H20A—C20—H20B109.5
O1—C9—C17126.5 (2)O4—C20—H20C109.5
C11—C10—C9121.7 (3)H20A—C20—H20C109.5
C11—C10—O2128.1 (3)H20B—C20—H20C109.5
C9—C10—O2110.3 (3)
C15—C1—C2—O3178.5 (3)C5—C14—C15—C1174.8 (3)
C15—C1—C2—C31.0 (4)C4—C14—C15—C16179.0 (2)
C20—O4—C3—C425.2 (4)C5—C14—C15—C163.0 (4)
C20—O4—C3—C2157.7 (2)C2—C1—C15—C141.6 (4)
C1—C2—C3—O4179.4 (2)C2—C1—C15—C16179.5 (2)
O3—C2—C3—O40.1 (4)C8—N7—C16—C15167.7 (2)
C1—C2—C3—C42.1 (4)C6—N7—C16—C1546.0 (3)
O3—C2—C3—C4177.4 (2)C8—N7—C16—C1369.2 (3)
O4—C3—C4—C14177.6 (2)C6—N7—C16—C13169.1 (3)
C2—C3—C4—C140.6 (4)C14—C15—C16—N711.3 (3)
C8—N7—C6—C5169.4 (2)C1—C15—C16—N7170.9 (2)
C16—N7—C6—C567.7 (3)C14—C15—C16—C13131.0 (3)
C14—C5—C6—N750.4 (3)C1—C15—C16—C1351.1 (3)
C16—N7—C8—C1745.6 (3)C18—C13—C16—N758.0 (3)
C6—N7—C8—C17168.9 (2)C18—C13—C16—C15179.5 (2)
C19—O1—C9—C100.3 (4)C10—C9—C17—C180.6 (4)
C19—O1—C9—C17179.7 (3)O1—C9—C17—C18179.9 (3)
O1—C9—C10—C11179.4 (3)C10—C9—C17—C8175.7 (3)
C17—C9—C10—C110.1 (5)O1—C9—C17—C83.7 (4)
O1—C9—C10—O20.5 (4)N7—C8—C17—C9172.2 (3)
C17—C9—C10—O2179.9 (3)N7—C8—C17—C1811.7 (4)
C19—O2—C10—C11179.4 (4)C11—C12—C18—C170.2 (5)
C19—O2—C10—C90.5 (4)C11—C12—C18—C13178.2 (3)
C9—C10—C11—C120.6 (5)C9—C17—C18—C120.7 (4)
O2—C10—C11—C12179.6 (3)C8—C17—C18—C12175.5 (3)
C10—C11—C12—C180.4 (5)C9—C17—C18—C13178.8 (2)
C3—C4—C14—C152.1 (4)C8—C17—C18—C132.6 (4)
C3—C4—C14—C5175.9 (2)C16—C13—C18—C12152.2 (3)
C6—C5—C14—C1516.5 (3)C16—C13—C18—C1725.9 (4)
C6—C5—C14—C4161.5 (2)C10—O2—C19—O10.3 (4)
C4—C14—C15—C13.1 (4)C9—O1—C19—O20.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.91 (4)2.29 (3)2.688 (3)106 (2)
O3—H3O···O4i0.91 (4)1.98 (4)2.870 (3)163 (3)
C20—H20C···Cg1ii0.962.623.460 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H19NO4
Mr325.35
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)13.314 (2), 5.151 (1), 23.585 (3)
β (°) 100.39 (1)
V3)1590.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.34 × 0.14
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1816, 1669, 1331
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 0.99
No. of reflections1669
No. of parameters223
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997b), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.91 (4)2.29 (3)2.688 (3)106 (2)
O3—H3O···O4i0.91 (4)1.98 (4)2.870 (3)163 (3)
C20—H20C···Cg1ii0.962.623.460 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds