Download citation
Download citation
link to html
In the title compound, C9H9NO2, the mean planes of the acrylamide moiety and the benzene ring make a dihedral angle of 11.6 (2)°. In the crystal structure, inter­molecular O—H...O and N—H...O hydrogen bonds link the mol­ecules into two-dimensional corrugated sheets parallel to the ac plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040730/cv6616sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040730/cv6616Isup2.hkl
Contains datablock I

CCDC reference: 296550

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.134
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.814 0.993 Tmin(prime) and Tmax expected: 0.966 0.979 RR(prime) = 0.831 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.83 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The rational design of new materials in crystal engineering has been widely used for the potential applications (Desiraju, 1989; Thalladi et al., 1998; Du et al., 2005a). Recently, hydrogen bonding interactions have been widely used as the most successful strategy for engineering the structures of crystals to control molecular self-assembly in a helical structure (Gangopadhyay et al., 2001; Anthony et al., 2005; Du et al., 2005b). Furthermore, intermolecular hydrogen-bonding interactions could provide precise topological control to design novel materials. The directional nature of hydrogen bonds is exploited in the organized self-assembly of molecules in the solid state (Steed & Atwood, 2000). Here we report the synthesis and X-ray crystal structure of the title compound, (I) (Fig. 1).

The N1—C7 bond length (Table 1) is significantly shorter than a typical single C—N bond (1.47 Å; Sasada, 1984) and very close to the C N double-bond distance (1.28 Å; Wang et al., 1998). It is indicative of the conjugation of atoms N1, C7, O2, C8 and C9, forming a π56 configuration. The mean plane of the acrylamide moiety and the benzene ring make a dihedral angle of 11.6 (2)°. The crystal packing (Fig. 2) is characterized by the formation of two-dimensional waved sheets parallel to the ac plane via intermolecular O—H···O and N—H···O hydrogen bonds (Table 2).

Experimental top

To a solution of 4-aminophenol (0.545 g, 5 mmol) and triethylamine (3.0 ml) in anhydrous tetrahydrofuran (15.0 ml) and acrylic chloride in andydrous tetrahydrofuran (5.0 ml) was added dropwise with stirring. After stirring for 24 h, ice water (20 ml) was added to the reaction mixture. The resulting mixture was extracted with chroloform. The organic layer was dried over magnesium sulfate, the residue was recrystallized from ethyl acetate to give the title compound (I) (yield: 40%, 326 mg). 1H NMR (300 MHz, CDCl3): δ 5.72 (m, 1H), 6.30 (m, 2H), 6,72 (d, 2H), 7.40 (d, 2H). Crystals of (I) were obtained as blocks by recrystallization from an ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: APEXII (Bruker, 2003); cell refinement: APEXII and SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the crystal packing, showing the intermolecular hydrogen bonds (dashed lines).
N-(4-hydroxyphenyl)acrylamide top
Crystal data top
C9H9NO2Dx = 1.264 Mg m3
Mr = 163.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2486 reflections
a = 12.787 (4) Åθ = 2.6–24.0°
b = 9.918 (3) ŵ = 0.09 mm1
c = 13.524 (4) ÅT = 293 K
V = 1715.0 (9) Å3Block, colourless
Z = 80.38 × 0.30 × 0.24 mm
F(000) = 688
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
1510 independent reflections
Radiation source: fine-focus sealed tube1195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1115
Tmin = 0.814, Tmax = 0.993k = 1111
8550 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.3734P]
where P = (Fo2 + 2Fc2)/3
1510 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C9H9NO2V = 1715.0 (9) Å3
Mr = 163.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.787 (4) ŵ = 0.09 mm1
b = 9.918 (3) ÅT = 293 K
c = 13.524 (4) Å0.38 × 0.30 × 0.24 mm
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
1510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1195 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.993Rint = 0.019
8550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.134H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
1510 reflectionsΔρmin = 0.14 e Å3
110 parameters
Special details top

Experimental. Single crystal X-ray diffraction measurements were carried out with a BRUKER APEX II CCD diffractometer. The structure was solved by direct and difference Fourier methods. The final refinement was performed by full-matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Full-matrix

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68637 (10)0.35753 (15)0.65373 (8)0.0646 (4)
H10.62880.39130.64360.097*
O20.99601 (9)0.03185 (14)0.35669 (10)0.0643 (4)
N10.83017 (10)0.09147 (14)0.31687 (10)0.0516 (4)
H1B0.78450.08650.27030.062*
C10.70233 (14)0.22665 (19)0.40081 (12)0.0555 (5)
H1A0.66470.22880.34200.067*
C20.66403 (14)0.29334 (19)0.48240 (13)0.0565 (5)
H20.60110.34000.47840.068*
C30.71921 (13)0.29092 (17)0.57019 (12)0.0505 (5)
C40.81173 (14)0.2193 (2)0.57485 (12)0.0572 (5)
H40.84870.21630.63400.069*
C50.85002 (13)0.15245 (18)0.49346 (12)0.0541 (5)
H50.91230.10450.49800.065*
C60.79596 (13)0.15635 (17)0.40472 (11)0.0466 (4)
C70.92373 (13)0.03689 (17)0.29635 (12)0.0508 (5)
C80.93401 (17)0.0184 (2)0.19511 (15)0.0678 (6)
H80.87620.01740.15340.081*
C91.0226 (2)0.0688 (3)0.16251 (19)0.0944 (8)
H9A1.08110.07040.20340.113*
H9B1.02690.10280.09860.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0540 (8)0.0988 (10)0.0412 (7)0.0125 (7)0.0076 (6)0.0091 (6)
O20.0429 (7)0.0926 (10)0.0573 (8)0.0061 (6)0.0056 (6)0.0037 (6)
N10.0430 (8)0.0693 (9)0.0424 (8)0.0045 (7)0.0086 (6)0.0018 (7)
C10.0482 (10)0.0791 (12)0.0393 (9)0.0088 (9)0.0124 (7)0.0013 (8)
C20.0451 (10)0.0783 (12)0.0462 (10)0.0126 (8)0.0086 (8)0.0008 (8)
C30.0456 (9)0.0669 (11)0.0390 (9)0.0011 (8)0.0038 (7)0.0016 (7)
C40.0520 (10)0.0801 (12)0.0394 (9)0.0065 (9)0.0132 (8)0.0024 (8)
C50.0440 (9)0.0704 (11)0.0478 (10)0.0093 (8)0.0103 (7)0.0030 (8)
C60.0422 (9)0.0576 (9)0.0401 (9)0.0009 (7)0.0039 (7)0.0037 (7)
C70.0450 (10)0.0585 (10)0.0489 (10)0.0010 (8)0.0020 (8)0.0050 (7)
C80.0655 (13)0.0792 (13)0.0587 (12)0.0095 (10)0.0041 (10)0.0095 (10)
C90.0901 (17)0.1141 (18)0.0790 (15)0.0287 (15)0.0020 (13)0.0295 (14)
Geometric parameters (Å, º) top
O1—C31.374 (2)C3—C41.381 (2)
O1—H10.8200C4—C51.375 (2)
O2—C71.2339 (19)C4—H40.9300
N1—C71.342 (2)C5—C61.385 (2)
N1—C61.420 (2)C5—H50.9300
N1—H1B0.8600C7—C81.481 (3)
C1—C21.376 (2)C8—C91.315 (3)
C1—C61.387 (2)C8—H80.9300
C1—H1A0.9300C9—H9A0.9300
C2—C31.381 (2)C9—H9B0.9300
C2—H20.9300
C3—O1—H1109.5C4—C5—C6120.15 (15)
C7—N1—C6129.07 (14)C4—C5—H5119.9
C7—N1—H1B115.5C6—C5—H5119.9
C6—N1—H1B115.5C5—C6—C1118.55 (16)
C2—C1—C6121.21 (15)C5—C6—N1123.94 (15)
C2—C1—H1A119.4C1—C6—N1117.51 (14)
C6—C1—H1A119.4O2—C7—N1123.18 (16)
C1—C2—C3119.93 (16)O2—C7—C8122.02 (16)
C1—C2—H2120.0N1—C7—C8114.81 (15)
C3—C2—H2120.0C9—C8—C7121.8 (2)
O1—C3—C2122.83 (15)C9—C8—H8119.1
O1—C3—C4118.12 (14)C7—C8—H8119.1
C2—C3—C4119.05 (16)C8—C9—H9A120.0
C5—C4—C3121.09 (15)C8—C9—H9B120.0
C5—C4—H4119.5H9A—C9—H9B120.0
C3—C4—H4119.5
C6—C1—C2—C30.0 (3)C2—C1—C6—C51.1 (3)
C1—C2—C3—O1178.68 (17)C2—C1—C6—N1179.43 (16)
C1—C2—C3—C41.0 (3)C7—N1—C6—C512.5 (3)
O1—C3—C4—C5178.79 (17)C7—N1—C6—C1168.01 (17)
C2—C3—C4—C50.9 (3)C6—N1—C7—O22.6 (3)
C3—C4—C5—C60.2 (3)C6—N1—C7—C8177.74 (16)
C4—C5—C6—C11.2 (3)O2—C7—C8—C93.9 (3)
C4—C5—C6—N1179.38 (17)N1—C7—C8—C9176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.673 (2)171
N1—H1B···O1ii0.862.092.916 (2)161
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H9NO2
Mr163.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.787 (4), 9.918 (3), 13.524 (4)
V3)1715.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.30 × 0.24
Data collection
DiffractometerBruker APEX-II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.814, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8550, 1510, 1195
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.134, 1.06
No. of reflections1510
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.14

Computer programs: APEXII (Bruker, 2003), APEXII and SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C31.374 (2)N1—C71.342 (2)
O2—C71.2339 (19)N1—C61.420 (2)
C7—N1—C6129.07 (14)C1—C6—N1117.51 (14)
O1—C3—C2122.83 (15)O2—C7—N1123.18 (16)
O1—C3—C4118.12 (14)O2—C7—C8122.02 (16)
C5—C6—N1123.94 (15)N1—C7—C8114.81 (15)
C1—C2—C3—O1178.68 (17)C7—N1—C6—C1168.01 (17)
O1—C3—C4—C5178.79 (17)C6—N1—C7—O22.6 (3)
C4—C5—C6—N1179.38 (17)C6—N1—C7—C8177.74 (16)
C2—C1—C6—N1179.43 (16)O2—C7—C8—C93.9 (3)
C7—N1—C6—C512.5 (3)N1—C7—C8—C9176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.673 (2)171
N1—H1B···O1ii0.862.092.916 (2)161
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds