Download citation
Download citation
link to html
In the crystal structure of the title compound, (C4H12N2)[Fe(H2O)6](SO4)2, hydrogen bonds link the piperazinium cation, the hexa­aquairon(II) cation and the sulfate anions into a three-dimensional network. The [Fe(H2O)6]2+ and piperazinium cations each lie on a centre of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042170/hg6264sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042170/hg6264Isup2.hkl
Contains datablock I

CCDC reference: 296566

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.085
  • Data-to-parameter ratio = 11.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

This report describes a study on the reactions of iron(II) sulfate and piperazine under solvothermal conditions. We have previously described a 4,4-bipyridine salt of hexaquairon(II) sulfate, accompanied by two uncoordinated water molecules (Fu et al., 2005). A similar reaction with N,N-diethylformamide (DMF) as solvent and piperazine as diamine yielded the title compound, (I) (Fig. 1), although DMF was not incorporated into the crystal structure. The compound can be regarded as a double salt of piperazinium sulfate and hexaquairon(II) sulfate.

The [Fe(H2O)6]2+ and C4H12N22+ cations and the sulfate anions interact through hydrogen bonds (Table 2), forming a three-dimensional network. The organic cation and the Fe atom each lie on an inversion center. There are only four examples in the literature of a hexaaquametal sulfate salt having an organic piperazine cation. The structures of piperazinium hexaquacobalt(II) disulfate (Pan et al., 2003) and piperazinium hexaquanickel(II) disulfate (Meng et al., 2004) are similar to that of the title compound, but hemi(piperazinium) hexaquaaluminium(III) bis(sulfate) tetrahydrate (Bataille, 2003) and piperazinium hexaquazinc(II) bis(sulfate) (Rekik et al., 2005) have additional hydrogen-bond interactions with uncoordinated water molecules.

Experimental top

Iron(II) sulfate heptahydrate (0.278 g, 1 mmol) was dissolved in DMF (7 ml) under constant stirring. A drop of concentrated sulfuric acid (0.06 ml, 1 mmol) was added, followed by piperazine (0.086 g, 1 mmol). The final mixture was placed in a 15 ml Teflon-lined Parr bomb, which was heated at 383 K for 2 d. The bomb was cooled and opened to reveal pale-green block-shaped crystals in about 40% yield with respect to Fe.

Refinement top

H atoms were located in difference Fourier maps and were refined with distance restraints of O—H = N—H = 0.85 (1) Å and C—H =0.95 (1) Å; their displacement parameters were refined freely.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. ORTEPII plot (Johnson, 1976) of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probablility level.
Piperazinium(2+) hexaaquairon(II) bis(sulfate) top
Crystal data top
(C4H12N2)[Fe(H2O)6](SO4)2F(000) = 464
Mr = 444.22Dx = 1.809 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.8345 (6) Åθ = 2.8–27.0°
b = 9.3814 (8) ŵ = 1.25 mm1
c = 11.0965 (9) ÅT = 273 K
β = 91.284 (1)°Block, pale green
V = 815.37 (11) Å30.18 × 0.15 × 0.14 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1763 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.806, Tmax = 0.844k = 1011
4636 measured reflectionsl = 1014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.5012P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1763 reflectionsΔρmax = 0.63 e Å3
155 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (2)
Crystal data top
(C4H12N2)[Fe(H2O)6](SO4)2V = 815.37 (11) Å3
Mr = 444.22Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8345 (6) ŵ = 1.25 mm1
b = 9.3814 (8) ÅT = 273 K
c = 11.0965 (9) Å0.18 × 0.15 × 0.14 mm
β = 91.284 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1763 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1679 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.844Rint = 0.021
4636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.63 e Å3
1763 reflectionsΔρmin = 0.36 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50000.50000.02379 (16)
S10.52503 (6)0.45971 (6)0.77949 (5)0.02620 (17)
O10.1949 (2)0.36551 (19)0.43356 (17)0.0362 (4)
O20.1901 (2)0.6046 (2)0.60118 (19)0.0436 (5)
O30.0411 (3)0.6370 (2)0.35063 (17)0.0417 (4)
O40.3852 (2)0.35897 (18)0.79981 (17)0.0406 (4)
O50.5180 (2)0.5102 (2)0.65443 (16)0.0423 (5)
O60.6905 (2)0.3888 (2)0.80446 (17)0.0466 (5)
C20.0810 (3)0.5914 (3)0.9133 (2)0.0354 (5)
O70.5067 (3)0.5777 (2)0.86399 (19)0.0534 (5)
N10.1743 (3)0.4728 (3)0.9743 (2)0.0375 (5)
C10.0584 (3)0.6459 (3)0.9928 (3)0.0404 (6)
H90.157 (4)0.664 (3)0.898 (3)0.046 (8)*
H30.174 (4)0.674 (4)0.642 (3)0.050 (9)*
H50.023 (4)0.721 (4)0.352 (3)0.047 (9)*
H70.121 (4)0.717 (4)0.953 (3)0.056 (9)*
H20.177 (4)0.293 (4)0.386 (3)0.060 (10)*
H10.281 (5)0.397 (4)0.408 (3)0.057 (10)*
H40.274 (4)0.578 (3)0.620 (3)0.042 (9)*
H110.250 (5)0.433 (4)0.926 (3)0.074 (11)*
H80.016 (4)0.686 (3)1.073 (3)0.049 (8)*
H60.134 (5)0.631 (4)0.312 (3)0.067 (11)*
H100.037 (4)0.562 (3)0.836 (3)0.050 (8)*
H120.233 (5)0.506 (4)1.037 (4)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0207 (2)0.0218 (2)0.0290 (3)0.00017 (14)0.00509 (16)0.00031 (15)
S10.0224 (3)0.0259 (3)0.0305 (3)0.00013 (18)0.0054 (2)0.00480 (19)
O10.0287 (8)0.0283 (9)0.0521 (10)0.0005 (6)0.0132 (7)0.0076 (7)
O20.0307 (9)0.0352 (10)0.0646 (13)0.0045 (7)0.0107 (9)0.0148 (9)
O30.0477 (11)0.0303 (10)0.0479 (10)0.0083 (8)0.0201 (8)0.0085 (8)
O40.0352 (9)0.0344 (9)0.0526 (10)0.0091 (7)0.0107 (7)0.0029 (8)
O50.0275 (8)0.0641 (13)0.0353 (9)0.0002 (7)0.0034 (7)0.0169 (8)
O60.0293 (9)0.0603 (12)0.0505 (11)0.0129 (8)0.0087 (7)0.0195 (9)
C20.0324 (11)0.0418 (13)0.0325 (12)0.0044 (10)0.0080 (9)0.0028 (10)
O70.0713 (13)0.0325 (10)0.0569 (12)0.0076 (9)0.0159 (10)0.0056 (8)
N10.0223 (9)0.0501 (13)0.0406 (12)0.0029 (8)0.0095 (9)0.0005 (9)
C10.0385 (13)0.0330 (13)0.0502 (15)0.0059 (10)0.0107 (11)0.0019 (11)
Geometric parameters (Å, º) top
Fe1—O22.0894 (18)O2—H40.73 (3)
Fe1—O2i2.0894 (18)O3—H50.80 (3)
Fe1—O12.1253 (16)O3—H60.86 (4)
Fe1—O1i2.1253 (16)C2—N11.486 (3)
Fe1—O3i2.1273 (18)C2—C11.509 (3)
Fe1—O32.1273 (18)C2—H90.92 (3)
S1—O71.460 (2)C2—H100.96 (3)
S1—O51.4663 (18)N1—C1ii1.487 (3)
S1—O41.4678 (16)N1—H110.89 (4)
S1—O61.4781 (17)N1—H120.88 (5)
O1—H20.87 (4)C1—N1ii1.487 (3)
O1—H10.79 (4)C1—H70.93 (3)
O2—H30.80 (4)C1—H81.01 (3)
O2—Fe1—O2i180.0Fe1—O2—H3124 (2)
O2—Fe1—O187.49 (8)Fe1—O2—H4128 (3)
O2i—Fe1—O192.51 (8)H3—O2—H4106 (3)
O2—Fe1—O1i92.51 (8)Fe1—O3—H5123 (2)
O2i—Fe1—O1i87.49 (8)Fe1—O3—H6120 (2)
O1—Fe1—O1i180.00 (9)H5—O3—H6103 (3)
O2—Fe1—O3i89.05 (8)N1—C2—C1110.0 (2)
O2i—Fe1—O3i90.95 (8)N1—C2—H9108.8 (18)
O1—Fe1—O3i91.96 (7)C1—C2—H9109.3 (18)
O1i—Fe1—O3i88.04 (7)N1—C2—H10110.8 (19)
O2—Fe1—O390.95 (8)C1—C2—H10111.7 (18)
O2i—Fe1—O389.05 (8)H9—C2—H10106 (3)
O1—Fe1—O388.04 (7)C2—N1—C1ii112.0 (2)
O1i—Fe1—O391.96 (7)C2—N1—H11111 (3)
O3i—Fe1—O3180.0C1ii—N1—H11105 (3)
O7—S1—O5111.14 (12)C2—N1—H12110 (2)
O7—S1—O4107.77 (11)C1ii—N1—H12112 (2)
O5—S1—O4109.95 (11)H11—N1—H12106 (3)
O7—S1—O6108.62 (13)N1ii—C1—C2110.1 (2)
O5—S1—O6109.70 (10)N1ii—C1—H7110 (2)
O4—S1—O6109.63 (11)C2—C1—H7110.4 (19)
Fe1—O1—H2124 (2)N1ii—C1—H8104.5 (17)
Fe1—O1—H1121 (2)C2—C1—H8114.3 (17)
H2—O1—H1102 (3)H7—C1—H8108 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O7iii0.88 (5)2.43 (4)3.080 (3)131 (3)
N1—H12···O6iii0.88 (5)2.10 (5)2.953 (3)165 (3)
O3—H6···O6iv0.86 (4)1.91 (4)2.757 (2)167 (3)
N1—H11···O70.89 (4)2.54 (4)3.065 (3)119 (3)
O2—H4···O50.73 (3)2.04 (3)2.768 (3)174 (3)
O1—H1···O5iv0.79 (4)1.94 (4)2.733 (2)175 (3)
O1—H2···O6v0.87 (4)1.94 (4)2.783 (3)164 (3)
O3—H5···O7vi0.80 (3)1.90 (4)2.695 (3)173 (3)
O2—H3···O4vii0.80 (4)1.91 (4)2.698 (3)165 (3)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z1/2; (vi) x1/2, y+3/2, z1/2; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Fe(H2O)6](SO4)2
Mr444.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.8345 (6), 9.3814 (8), 11.0965 (9)
β (°) 91.284 (1)
V3)815.37 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.806, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
4636, 1763, 1679
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.10
No. of reflections1763
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.36

Computer programs: SMART (Bruker, 2002), SMART, SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELX97.

Selected geometric parameters (Å, º) top
Fe1—O22.0894 (18)Fe1—O32.1273 (18)
Fe1—O12.1253 (16)
O2—Fe1—O187.49 (8)O2—Fe1—O390.95 (8)
O2i—Fe1—O192.51 (8)O1—Fe1—O388.04 (7)
O2—Fe1—O3i89.05 (8)O1i—Fe1—O391.96 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O7ii0.88 (5)2.43 (4)3.080 (3)131 (3)
N1—H12···O6ii0.88 (5)2.10 (5)2.953 (3)165 (3)
O3—H6···O6iii0.86 (4)1.91 (4)2.757 (2)167 (3)
N1—H11···O70.89 (4)2.54 (4)3.065 (3)119 (3)
O2—H4···O50.73 (3)2.04 (3)2.768 (3)174 (3)
O1—H1···O5iii0.79 (4)1.94 (4)2.733 (2)175 (3)
O1—H2···O6iv0.87 (4)1.94 (4)2.783 (3)164 (3)
O3—H5···O7v0.80 (3)1.90 (4)2.695 (3)173 (3)
O2—H3···O4vi0.80 (4)1.91 (4)2.698 (3)165 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds