Download citation
Download citation
link to html
Chiral mol­ecules of the title compound, C22H24N4·H2O, have approximate twofold symmetry, essentially planar benzimid­azole fragments, and a ladder-like appearance in profile, with the benzimidazole planes exhibiting a dihedral angle of 68.75 (4)°. Geometric parameters are consistent with those of comparable species containing benzimidazole or cyclo­hexyl fragments. Adventitious water mol­ecules of solvation form strong O—H...N(imine) hydrogen bonds to yield infinite 21 columns along the c-axis direction. The columns are related by glide-plane symmetry operations and are linked by C—H...π inter­actions to yield racemic crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040444/hg6277sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040444/hg6277IIsup2.hkl
Contains datablock II

CCDC reference: 296719

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.106
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.831 1.000 Tmin(prime) and Tmax expected: 0.977 0.998 RR(prime) = 0.849 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 30.55 From the CIF: _reflns_number_total 3030 Count of symmetry unique reflns 3029 Completeness (_total/calc) 100.03% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Bis(2-benzimidazol-2-yl)species, (I), bridged by a variety of alkyl or aryl spacers, X, are remarkably versatile. They have, for example, been tested as anti-tumoor and antimicrobial agents (Baraldi et al., 2004), and as topoisomerase inhibitors (Walker & Saravia, 2004). Furthermore, they have been used as polymerization catalysts (Stibrany, 2001), as agents to study electron self-exchange (Knapp et al., 1990; Xie et al., 1999), in selective ion-exchange resins (van Berkel et al., 1995), as proton sponges (Stibrany et al., 2002), and as geometrically constraining ligands (Stibrany et al., 2004). Here, we report the structure of the title compound, (II), a bis(benzimidazole) ligand with a rigid two-carbon bridge and two torsional degrees of freedom.

Molecules of (II) (Fig. 1) exhibit approximate diad axes, which pass through the midpoints of the C31—C32 and C34—C35 bonds of the cyclohexyl fragments. Both benzimidazole fragments are essentially planar, as expected, and they are oriented in such a way as to give the molecule a ladder-like appearance in profile (Fig. 2). The dihedral angle between the benzimidazole planes [68.75 (4)°] is approximately 5° larger than that reported for bis(benzimidazole-2-yl)methane [63.53 (2)°; Duan et al., 2005], a molecule related to (II) but with R = H and with a one-carbon atom bridge X = CH2. Geometric parameters for (II) (Table 1) agree well with those reported for other structures of bis(benzimidazole)s with rigid two-carbon bridges (Stibrany et al., 2005). In particular, in the N—C—N fragments, the CN(imine) distances are approximately 0.05 Å shorter than the CN(amine) distances, consonant with the partial double-bond character of the former bonds.

In the crystal structure of (II), water molecules of solvation form strong OH···N(imine) hydrogen bonds (Table 2) with the organic molecules to yield infinite chains or columns parallel to the c axis direction, in which successive molecules of a given type are related by the 21 symmetry operations of the space group (Fig. 3). The organic molecules of (II) are chiral and, as a result, individual `21' columns contain one enantiomer exclusively. The glide-plane symmetry operations produce parallel columns containing the other enantiomer exclusively and, as a result, crystals of (II) are racemic. To complete the structure, the columns are linked by C—H···π interactions, some of which are shown in Table 3. There is little, if any, evidence for ππ stacking.

Experimental top

Trans-1,2-bis(1-methylbenzimidazol-2-yl)cyclohexane hydrate was prepared in two steps. Firstly, trans(1,2-bis(1-H-benzimidazol-2-yl) was prepared by the Phillips condensation method (Phillips, 1931) from trans-1,2-cyclohexane dicarboxylic acid and two equivalents of 1,2-phenylenediamine. Secondly, using the procedure described previously by Stibrany et al. (2004), methylation of the amine N atoms, effected using methyl iodide, yielded the non-hydrated product. Crystals of the title compound, (II), were obtained by slow evaporation in air of an acetone solution of the product. Incorporation of adventitious water resulted in the monohydrate [m.p. 479 K (soften), 491 K (melt)]. Spectroscopic analysis: IR (KBr pellet, cm−1): 3384 (m), 3051 (w), 2929 (s), 2853 (m), 1614 (w), 1468 (s), 1443 (s), 1329 (m), 1008 (w), 745 (s).

Refinement top

The water H atoms, which are involved in hydrogen bonding, were refined isotropically. C-bound H atoms were positioned geometrically and treated as riding, with Csp2—H and Csp3—H distances set to 0.93 and 0.96 Å, respectively, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), respectively. A final difference Fourier map revealed 37 peaks larger than the absolute value of the largest negative peak. Of these, 33 of the first 35 peaks were located approximately midway along the C—C or C—N vectors, of which there are a total of 30 in the molecular framework. The 33 peaks are consistent with residual bond density, with three of the bonds exhibiting split peaks.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of the cation [? No charge. `Organic molecule' better?] of (II), showing 25% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the organic molecule of (II), showing the benzimidazole planes in profile.
[Figure 3] Fig. 3. A projection, along the a axis, of the structure of (II). O atoms are coloured pink [Purple?] and hydrogen bonds are indicated by dashed lines.
trans-1,2-Bis(1-methylbenzimidazol-2-yl)cyclohexane monohydrate top
Crystal data top
C22H24N4·H2ODx = 1.264 Mg m3
Mr = 362.47Melting point: 479 K (soften), 491 K (melt) K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6763 reflections
a = 9.6596 (7) Åθ = 2.5–30.6°
b = 14.5552 (11) ŵ = 0.08 mm1
c = 13.547 (1) ÅT = 100 K
V = 1904.7 (2) Å3Lath, colourless
Z = 40.29 × 0.14 × 0.03 mm
F(000) = 776
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1213
Tmin = 0.831, Tmax = 1.00k = 1020
14429 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.071P)2 + 0.2238P]
where P = (Fo2 + 2Fc2)/3
3030 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C22H24N4·H2OV = 1904.7 (2) Å3
Mr = 362.47Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.6596 (7) ŵ = 0.08 mm1
b = 14.5552 (11) ÅT = 100 K
c = 13.547 (1) Å0.29 × 0.14 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2785 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.00Rint = 0.038
14429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.37 e Å3
3030 reflectionsΔρmin = 0.16 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.81216 (16)1.00399 (11)0.92421 (12)0.0190 (3)
N130.64846 (16)0.93479 (11)1.01498 (13)0.0183 (3)
N210.41947 (15)0.81453 (10)0.82663 (12)0.0163 (3)
N230.58166 (16)0.89532 (11)0.74536 (12)0.0179 (3)
C110.88160 (19)0.94786 (12)0.99015 (14)0.0192 (3)
C120.67326 (17)0.99353 (12)0.94277 (14)0.0176 (3)
C130.77785 (18)0.90483 (13)1.04589 (14)0.0182 (3)
C140.8138 (2)0.84054 (14)1.11798 (14)0.0217 (4)
H140.74620.81091.15500.026*
C150.9528 (2)0.82222 (16)1.13281 (17)0.0268 (4)
H150.97850.77871.17970.032*
C161.0559 (2)0.86786 (15)1.07863 (17)0.0272 (4)
H161.14860.85571.09200.033*
C171.02215 (19)0.93073 (14)1.00551 (17)0.0244 (4)
H171.09000.96010.96840.029*
C180.8761 (2)1.06134 (14)0.84882 (19)0.0301 (5)
H18A0.82911.05250.78710.045*
H18B0.97171.04470.84170.045*
H18C0.86951.12470.86790.045*
C210.48462 (18)0.75291 (12)0.76407 (13)0.0165 (3)
C220.48202 (17)0.89762 (12)0.81235 (13)0.0158 (3)
C230.58566 (18)0.80432 (12)0.71422 (14)0.0169 (3)
C240.67272 (19)0.76034 (13)0.64641 (13)0.0200 (4)
H240.74010.79300.61220.024*
C250.6559 (2)0.66706 (13)0.63174 (16)0.0222 (4)
H250.71430.63670.58800.027*
C260.5529 (2)0.61712 (13)0.68122 (15)0.0214 (4)
H260.54340.55460.66880.026*
C270.46464 (19)0.65946 (12)0.74862 (14)0.0194 (3)
H270.39590.62690.78160.023*
C280.3083 (2)0.79329 (13)0.89543 (15)0.0213 (4)
H28A0.33530.81110.96090.032*
H28B0.28980.72850.89410.032*
H28C0.22630.82630.87670.032*
C310.56325 (19)1.04464 (12)0.88790 (14)0.0173 (3)
H310.60091.06420.82410.021*
C320.43844 (18)0.98159 (12)0.86918 (13)0.0161 (3)
H320.40280.96140.93330.019*
C330.32200 (19)1.03345 (12)0.81575 (15)0.0193 (3)
H33A0.35371.05240.75090.023*
H33B0.24310.99310.80710.023*
C340.2784 (2)1.11799 (13)0.87522 (16)0.0227 (4)
H34A0.20731.15120.83940.027*
H34B0.23971.09860.93790.027*
C350.4018 (2)1.18153 (13)0.89374 (15)0.0231 (4)
H35A0.43531.20530.83130.028*
H35B0.37241.23320.93380.028*
C360.5189 (2)1.13053 (13)0.94622 (15)0.0215 (4)
H36A0.48841.11241.01160.026*
H36B0.59761.17130.95370.026*
O10.38699 (16)0.93244 (12)0.12819 (13)0.0280 (3)
H1O0.464 (3)0.927 (2)0.099 (2)0.030 (7)*
H2O0.386 (3)0.984 (2)0.158 (3)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0208 (7)0.0175 (7)0.0188 (8)0.0020 (5)0.0032 (6)0.0036 (6)
N130.0198 (7)0.0214 (7)0.0137 (7)0.0001 (5)0.0005 (5)0.0003 (6)
N210.0194 (6)0.0153 (7)0.0142 (7)0.0012 (5)0.0004 (5)0.0003 (6)
N230.0206 (6)0.0175 (7)0.0157 (7)0.0003 (5)0.0001 (6)0.0001 (6)
C110.0206 (8)0.0184 (8)0.0185 (8)0.0004 (6)0.0013 (6)0.0065 (7)
C120.0192 (8)0.0173 (8)0.0163 (9)0.0011 (6)0.0014 (6)0.0041 (7)
C130.0190 (7)0.0212 (8)0.0144 (8)0.0008 (6)0.0004 (6)0.0033 (6)
C140.0229 (8)0.0271 (9)0.0151 (9)0.0039 (7)0.0001 (7)0.0015 (7)
C150.0284 (9)0.0332 (11)0.0188 (9)0.0090 (8)0.0033 (8)0.0027 (8)
C160.0205 (8)0.0339 (10)0.0272 (10)0.0069 (8)0.0023 (7)0.0094 (9)
C170.0194 (8)0.0266 (9)0.0272 (10)0.0005 (7)0.0029 (7)0.0068 (8)
C180.0337 (10)0.0210 (9)0.0355 (12)0.0024 (8)0.0151 (9)0.0030 (8)
C210.0188 (7)0.0173 (7)0.0134 (7)0.0022 (6)0.0009 (6)0.0003 (6)
C220.0181 (7)0.0158 (7)0.0135 (8)0.0007 (6)0.0021 (6)0.0012 (6)
C230.0198 (7)0.0165 (8)0.0143 (8)0.0012 (6)0.0026 (6)0.0003 (6)
C240.0218 (8)0.0237 (8)0.0145 (8)0.0011 (6)0.0012 (6)0.0001 (7)
C250.0277 (9)0.0222 (8)0.0168 (8)0.0056 (7)0.0019 (7)0.0031 (7)
C260.0291 (9)0.0153 (8)0.0198 (9)0.0031 (7)0.0015 (7)0.0021 (7)
C270.0235 (8)0.0164 (8)0.0184 (9)0.0001 (6)0.0001 (6)0.0003 (7)
C280.0251 (8)0.0187 (8)0.0201 (9)0.0029 (6)0.0051 (7)0.0006 (7)
C310.0223 (8)0.0141 (7)0.0155 (8)0.0006 (6)0.0004 (6)0.0005 (6)
C320.0208 (7)0.0142 (7)0.0133 (8)0.0008 (6)0.0012 (6)0.0002 (6)
C330.0226 (8)0.0187 (8)0.0167 (8)0.0036 (6)0.0028 (7)0.0005 (7)
C340.0277 (9)0.0217 (8)0.0187 (9)0.0070 (7)0.0015 (7)0.0014 (7)
C350.0340 (10)0.0171 (8)0.0182 (9)0.0027 (7)0.0018 (7)0.0013 (7)
C360.0306 (9)0.0148 (7)0.0192 (9)0.0007 (7)0.0001 (7)0.0017 (7)
O10.0273 (7)0.0333 (8)0.0233 (7)0.0082 (6)0.0041 (6)0.0066 (7)
Geometric parameters (Å, º) top
N11—C121.374 (2)C23—C241.400 (3)
N21—C221.366 (2)C24—C251.382 (3)
N13—C121.321 (3)C24—H240.9300
N23—C221.323 (2)C25—C261.403 (3)
N11—C111.384 (3)C25—H250.9300
N21—C211.385 (2)C26—C271.393 (3)
N13—C131.388 (2)C26—H260.9300
N23—C231.391 (2)C27—H270.9300
C11—C131.402 (3)C28—H28A0.9600
C21—C231.403 (3)C28—H28B0.9600
C12—C311.495 (2)C28—H28C0.9600
C22—C321.505 (2)C31—C361.540 (3)
C31—C321.536 (2)C31—H310.9800
N11—C181.456 (3)C32—C331.536 (2)
N21—C281.455 (2)C32—H320.9800
C11—C171.396 (3)C33—C341.530 (3)
C13—C141.396 (3)C33—H33A0.9700
C14—C151.384 (3)C33—H33B0.9700
C14—H140.9300C34—C351.529 (3)
C15—C161.404 (3)C34—H34A0.9700
C15—H150.9300C34—H34B0.9700
C16—C171.387 (3)C35—C361.528 (3)
C16—H160.9300C35—H35A0.9700
C17—H170.9300C35—H35B0.9700
C18—H18A0.9600C36—H36A0.9700
C18—H18B0.9600C36—H36B0.9700
C18—H18C0.9600O1—H1O0.85 (3)
C21—C271.390 (3)O1—H2O0.85 (3)
N13—C12—N11112.60 (16)C27—C26—C25121.20 (18)
N23—C22—N21113.36 (16)C27—C26—H26119.4
C12—N11—C11106.85 (15)C25—C26—H26119.4
C22—N21—C21106.60 (15)C21—C27—C26116.54 (18)
C12—N13—C13105.27 (15)C21—C27—H27121.7
C22—N23—C23104.61 (15)C26—C27—H27121.7
N11—C11—C13105.36 (16)N21—C28—H28A109.5
N21—C21—C23105.38 (15)N21—C28—H28B109.5
N13—C13—C11109.91 (16)H28A—C28—H28B109.5
N23—C23—C21110.04 (16)N21—C28—H28C109.5
C12—N11—C18127.30 (17)H28A—C28—H28C109.5
C11—N11—C18125.84 (17)H28B—C28—H28C109.5
C22—N21—C28127.25 (15)C12—C31—C32110.03 (14)
C21—N21—C28126.14 (15)C12—C31—C36110.29 (15)
N11—C11—C17132.30 (18)C32—C31—C36110.57 (15)
C17—C11—C13122.34 (19)C12—C31—H31108.6
N13—C12—C31124.15 (15)C32—C31—H31108.6
N11—C12—C31123.24 (16)C36—C31—H31108.6
N13—C13—C14130.19 (17)C22—C32—C33111.28 (15)
C14—C13—C11119.87 (17)C22—C32—C31110.50 (14)
C15—C14—C13118.17 (19)C33—C32—C31111.04 (15)
C15—C14—H14120.9C22—C32—H32108.0
C13—C14—H14120.9C33—C32—H32108.0
C14—C15—C16121.4 (2)C31—C32—H32108.0
C14—C15—H15119.3C34—C33—C32110.40 (16)
C16—C15—H15119.3C34—C33—H33A109.6
C17—C16—C15121.22 (18)C32—C33—H33A109.6
C17—C16—H16119.4C34—C33—H33B109.6
C15—C16—H16119.4C32—C33—H33B109.6
C16—C17—C11116.93 (19)H33A—C33—H33B108.1
C16—C17—H17121.5C35—C34—C33111.00 (16)
C11—C17—H17121.5C35—C34—H34A109.4
N11—C18—H18A109.5C33—C34—H34A109.4
N11—C18—H18B109.5C35—C34—H34B109.4
H18A—C18—H18B109.5C33—C34—H34B109.4
N11—C18—H18C109.5H34A—C34—H34B108.0
H18A—C18—H18C109.5C36—C35—C34111.06 (16)
H18B—C18—H18C109.5C36—C35—H35A109.4
N21—C21—C27131.51 (17)C34—C35—H35A109.4
C27—C21—C23123.10 (17)C36—C35—H35B109.4
N23—C22—C32125.09 (16)C34—C35—H35B109.4
N21—C22—C32121.54 (16)H35A—C35—H35B108.0
N23—C23—C24130.62 (17)C35—C36—C31111.20 (16)
C24—C23—C21119.32 (16)C35—C36—H36A109.4
C25—C24—C23118.23 (17)C31—C36—H36A109.4
C25—C24—H24120.9C35—C36—H36B109.4
C23—C24—H24120.9C31—C36—H36B109.4
C24—C25—C26121.59 (18)H36A—C36—H36B108.0
C24—C25—H25119.2H1O—O1—H2O108 (3)
C26—C25—H25119.2
C12—N11—C11—C17179.9 (2)C22—N23—C23—C24177.98 (19)
C18—N11—C11—C171.1 (3)C22—N23—C23—C210.53 (19)
C12—N11—C11—C130.49 (19)N21—C21—C23—N230.3 (2)
C18—N11—C11—C13178.46 (18)C27—C21—C23—N23179.62 (17)
C13—N13—C12—N110.0 (2)N21—C21—C23—C24178.41 (15)
C13—N13—C12—C31178.96 (16)C27—C21—C23—C240.9 (3)
C11—N11—C12—N130.3 (2)N23—C23—C24—C25177.99 (19)
C18—N11—C12—N13178.58 (18)C21—C23—C24—C250.4 (3)
C11—N11—C12—C31178.67 (16)C23—C24—C25—C261.4 (3)
C18—N11—C12—C312.4 (3)C24—C25—C26—C271.1 (3)
C12—N13—C13—C14177.9 (2)N21—C21—C27—C26177.93 (18)
C12—N13—C13—C110.3 (2)C23—C21—C27—C261.2 (3)
N11—C11—C13—N130.49 (19)C25—C26—C27—C210.2 (3)
C17—C11—C13—N13179.87 (17)N13—C12—C31—C3239.6 (2)
N11—C11—C13—C14177.93 (17)N11—C12—C31—C32141.48 (17)
C17—C11—C13—C141.7 (3)N13—C12—C31—C3682.6 (2)
N13—C13—C14—C15178.84 (19)N11—C12—C31—C3696.3 (2)
C11—C13—C14—C150.8 (3)N23—C22—C32—C3391.0 (2)
C13—C14—C15—C161.2 (3)N21—C22—C32—C3389.1 (2)
C14—C15—C16—C172.4 (3)N23—C22—C32—C3132.9 (2)
C15—C16—C17—C111.5 (3)N21—C22—C32—C31147.01 (16)
N11—C11—C17—C16178.97 (19)C12—C31—C32—C2257.82 (19)
C13—C11—C17—C160.6 (3)C36—C31—C32—C22179.89 (15)
C22—N21—C21—C27179.19 (19)C12—C31—C32—C33178.20 (16)
C28—N21—C21—C270.5 (3)C36—C31—C32—C3356.12 (19)
C22—N21—C21—C230.05 (19)C22—C32—C33—C34179.48 (15)
C28—N21—C21—C23178.78 (16)C31—C32—C33—C3457.0 (2)
C23—N23—C22—N210.6 (2)C32—C33—C34—C3557.1 (2)
C23—N23—C22—C32179.29 (16)C33—C34—C35—C3656.7 (2)
C21—N21—C22—N230.4 (2)C34—C35—C36—C3155.9 (2)
C28—N21—C22—N23179.12 (16)C12—C31—C36—C35177.43 (15)
C21—N21—C22—C32179.47 (15)C32—C31—C36—C3555.5 (2)
C28—N21—C22—C320.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N13i0.85 (3)2.12 (3)2.955 (2)171 (2)
O1—H2O···N23ii0.85 (3)2.14 (3)2.983 (2)170 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24N4·H2O
Mr362.47
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)9.6596 (7), 14.5552 (11), 13.547 (1)
V3)1904.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.14 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.831, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
14429, 3030, 2785
Rint0.038
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.00
No. of reflections3030
No. of parameters254
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.16

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
N11—C121.374 (2)N23—C231.391 (2)
N21—C221.366 (2)C11—C131.402 (3)
N13—C121.321 (3)C21—C231.403 (3)
N23—C221.323 (2)C12—C311.495 (2)
N11—C111.384 (3)C22—C321.505 (2)
N21—C211.385 (2)C31—C321.536 (2)
N13—C131.388 (2)
N13—C12—N11112.60 (16)C22—N23—C23104.61 (15)
N23—C22—N21113.36 (16)N11—C11—C13105.36 (16)
C12—N11—C11106.85 (15)N21—C21—C23105.38 (15)
C22—N21—C21106.60 (15)N13—C13—C11109.91 (16)
C12—N13—C13105.27 (15)N23—C23—C21110.04 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N13i0.85 (3)2.12 (3)2.955 (2)171 (2)
O1—H2O···N23ii0.85 (3)2.14 (3)2.983 (2)170 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z1/2.
Intermolecular C—H···Cgn interactions in (II) (Å, °) with H···Cgn distances less than 3.0 Å. The ring centroid designations n correspond to the numbers given in the scheme. top
C—H···CgnH···CgnC—H···CgnC···Cgn
C25—H25···Cg1i2.981413.749
C26—H26···Cg3i2.881563.748
C28—H28B···Cg1ii2.981543.864
C28—H28C···Cg4ii2.911243.534
Symmetry codes: (i) −x + 1/2, y + 1/2; z + 1/2; (ii) x + 1/2, −y + 1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds